基于多种软计算技术的异步电动机故障诊断方法:BESO-RDFA

IF 3.3 Q3 ENERGY & FUELS
Kapu V. Sri Ram Prasad;K. Dhananjay Rao;Guruvulu Naidu Ponnada;Umit Cali;Taha Selim Ustun
{"title":"基于多种软计算技术的异步电动机故障诊断方法:BESO-RDFA","authors":"Kapu V. Sri Ram Prasad;K. Dhananjay Rao;Guruvulu Naidu Ponnada;Umit Cali;Taha Selim Ustun","doi":"10.1109/OAJPE.2025.3547731","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid prediction technique for fault detection of induction machines. The established hybrid forecast scheme signifies the combined execution of Bald-Eagle- Search-Optimization (BESO) and Random-Decision-Forest-Algorithm (RDFA), called as BESO-RDFA prediction scheme. This proposed technique is used to predict the fault within a short period in the rotating machines. By considering the machine defects the RDFA is trained by using the BESO-based exact prediction with data in online mode. The MATLAB/Simulink work platform is employed to execute the model, which is then assessed using multiple techniques to forecast attributes and models of impending stator failure. A new robust diagnostic design is established to analyze the incipient stator winding failures. Simulation analysis shows the detection and isolation method with great sensitivity indicating the incipient winding failures.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"146-156"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10909623","citationCount":"0","resultStr":"{\"title\":\"A Novel Fault Diagnosis of Induction Motor by Using Various Soft Computation Techniques: BESO-RDFA\",\"authors\":\"Kapu V. Sri Ram Prasad;K. Dhananjay Rao;Guruvulu Naidu Ponnada;Umit Cali;Taha Selim Ustun\",\"doi\":\"10.1109/OAJPE.2025.3547731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a hybrid prediction technique for fault detection of induction machines. The established hybrid forecast scheme signifies the combined execution of Bald-Eagle- Search-Optimization (BESO) and Random-Decision-Forest-Algorithm (RDFA), called as BESO-RDFA prediction scheme. This proposed technique is used to predict the fault within a short period in the rotating machines. By considering the machine defects the RDFA is trained by using the BESO-based exact prediction with data in online mode. The MATLAB/Simulink work platform is employed to execute the model, which is then assessed using multiple techniques to forecast attributes and models of impending stator failure. A new robust diagnostic design is established to analyze the incipient stator winding failures. Simulation analysis shows the detection and isolation method with great sensitivity indicating the incipient winding failures.\",\"PeriodicalId\":56187,\"journal\":{\"name\":\"IEEE Open Access Journal of Power and Energy\",\"volume\":\"12 \",\"pages\":\"146-156\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10909623\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Access Journal of Power and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10909623/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10909623/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于感应电机故障检测的混合预测技术。所建立的混合预测方案是将Bald-Eagle- Search-Optimization (BESO)和Random-Decision-Forest-Algorithm (RDFA)相结合,称为BESO-RDFA预测方案。该方法可用于旋转机械短时间内的故障预测。在考虑机器缺陷的情况下,采用基于besc的精确预测方法对RDFA进行在线训练。利用MATLAB/Simulink工作平台执行该模型,然后使用多种技术对模型进行评估,以预测定子即将失效的属性和模型。建立了一种新的定子绕组早期故障鲁棒诊断设计。仿真分析表明,该方法对早期绕组故障的检测和隔离具有很高的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Fault Diagnosis of Induction Motor by Using Various Soft Computation Techniques: BESO-RDFA
This paper presents a hybrid prediction technique for fault detection of induction machines. The established hybrid forecast scheme signifies the combined execution of Bald-Eagle- Search-Optimization (BESO) and Random-Decision-Forest-Algorithm (RDFA), called as BESO-RDFA prediction scheme. This proposed technique is used to predict the fault within a short period in the rotating machines. By considering the machine defects the RDFA is trained by using the BESO-based exact prediction with data in online mode. The MATLAB/Simulink work platform is employed to execute the model, which is then assessed using multiple techniques to forecast attributes and models of impending stator failure. A new robust diagnostic design is established to analyze the incipient stator winding failures. Simulation analysis shows the detection and isolation method with great sensitivity indicating the incipient winding failures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信