Christian Saporito-Magriña , Lila Lopez-Montañana , María Laura Facio , Guadalupe Pagano , Topp Nicole , Ariana Danzi , Juan Ignacio Bellida , Agustín Silva , Matías Albizzati , Marisa Gabriela Repetto
{"title":"抗坏血酸以Cu(II)介导的方式增强血浆中igg富集蛋白聚集体的形成","authors":"Christian Saporito-Magriña , Lila Lopez-Montañana , María Laura Facio , Guadalupe Pagano , Topp Nicole , Ariana Danzi , Juan Ignacio Bellida , Agustín Silva , Matías Albizzati , Marisa Gabriela Repetto","doi":"10.1016/j.jinorgbio.2025.112905","DOIUrl":null,"url":null,"abstract":"<div><div>Protein aggregates have been reported in disease but also in physiological contexts in tissues as well as circulating protein aggregates in the bloodstream. Free Cu(II) induces the aggregation of serum proteins and this metal yields highly oxidant species upon reaction with hydrogen peroxide and also reacts with ascorbic acid (AA). A broad population is exposed to high doses of AA as second line therapy for different pathologies or as nutritional supplementation. This study addresses the effect of AA on the formation of plasma protein aggregates, observed by optic density, protein quantification and electrophoresis (SDS-PAGE) that, contrary to hampering the Cu(II)-induced plasma protein aggregation, AA potentiates their formation. Free Cu(II) induces the formation of IgG-enriched plasma protein aggregates but the combination with AA potentiates the incorporation of gamma-globulin (IgG) whereas other proteins such as albumin become depleted. The potentiating effect of Cu(II) and AA was corroborated employing isolated IgG. This effect of AA on Cu(II)-induced protein aggregation is not reproduced with isolated albumin. Additionally, AA does not potentiate Fe(III)-mediated aggregation of IgG, albumin or human plasma. Finally, it was shown that in healthy subjects which were administered high doses of intravenous AA, the aggregates can be obtained from the centrifuged plasma after 30 min of the administration of the antioxidant. Aggregated IgG have been shown to activate Fc receptors, involved in oxidative burst and inflammatory processes observed in neutrophils. Thus, the effect of AA on the immune system could be linked to the accumulation of protein aggregates enriched in specific proteins.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"269 ","pages":"Article 112905"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ascorbic acid potentiates the formation of IgG-enriched protein aggregates in plasma in a Cu(II)-mediated manner\",\"authors\":\"Christian Saporito-Magriña , Lila Lopez-Montañana , María Laura Facio , Guadalupe Pagano , Topp Nicole , Ariana Danzi , Juan Ignacio Bellida , Agustín Silva , Matías Albizzati , Marisa Gabriela Repetto\",\"doi\":\"10.1016/j.jinorgbio.2025.112905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Protein aggregates have been reported in disease but also in physiological contexts in tissues as well as circulating protein aggregates in the bloodstream. Free Cu(II) induces the aggregation of serum proteins and this metal yields highly oxidant species upon reaction with hydrogen peroxide and also reacts with ascorbic acid (AA). A broad population is exposed to high doses of AA as second line therapy for different pathologies or as nutritional supplementation. This study addresses the effect of AA on the formation of plasma protein aggregates, observed by optic density, protein quantification and electrophoresis (SDS-PAGE) that, contrary to hampering the Cu(II)-induced plasma protein aggregation, AA potentiates their formation. Free Cu(II) induces the formation of IgG-enriched plasma protein aggregates but the combination with AA potentiates the incorporation of gamma-globulin (IgG) whereas other proteins such as albumin become depleted. The potentiating effect of Cu(II) and AA was corroborated employing isolated IgG. This effect of AA on Cu(II)-induced protein aggregation is not reproduced with isolated albumin. Additionally, AA does not potentiate Fe(III)-mediated aggregation of IgG, albumin or human plasma. Finally, it was shown that in healthy subjects which were administered high doses of intravenous AA, the aggregates can be obtained from the centrifuged plasma after 30 min of the administration of the antioxidant. Aggregated IgG have been shown to activate Fc receptors, involved in oxidative burst and inflammatory processes observed in neutrophils. Thus, the effect of AA on the immune system could be linked to the accumulation of protein aggregates enriched in specific proteins.</div></div>\",\"PeriodicalId\":364,\"journal\":{\"name\":\"Journal of Inorganic Biochemistry\",\"volume\":\"269 \",\"pages\":\"Article 112905\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0162013425000856\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013425000856","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ascorbic acid potentiates the formation of IgG-enriched protein aggregates in plasma in a Cu(II)-mediated manner
Protein aggregates have been reported in disease but also in physiological contexts in tissues as well as circulating protein aggregates in the bloodstream. Free Cu(II) induces the aggregation of serum proteins and this metal yields highly oxidant species upon reaction with hydrogen peroxide and also reacts with ascorbic acid (AA). A broad population is exposed to high doses of AA as second line therapy for different pathologies or as nutritional supplementation. This study addresses the effect of AA on the formation of plasma protein aggregates, observed by optic density, protein quantification and electrophoresis (SDS-PAGE) that, contrary to hampering the Cu(II)-induced plasma protein aggregation, AA potentiates their formation. Free Cu(II) induces the formation of IgG-enriched plasma protein aggregates but the combination with AA potentiates the incorporation of gamma-globulin (IgG) whereas other proteins such as albumin become depleted. The potentiating effect of Cu(II) and AA was corroborated employing isolated IgG. This effect of AA on Cu(II)-induced protein aggregation is not reproduced with isolated albumin. Additionally, AA does not potentiate Fe(III)-mediated aggregation of IgG, albumin or human plasma. Finally, it was shown that in healthy subjects which were administered high doses of intravenous AA, the aggregates can be obtained from the centrifuged plasma after 30 min of the administration of the antioxidant. Aggregated IgG have been shown to activate Fc receptors, involved in oxidative burst and inflammatory processes observed in neutrophils. Thus, the effect of AA on the immune system could be linked to the accumulation of protein aggregates enriched in specific proteins.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.