怪物的最大子群

IF 1.5 1区 数学 Q1 MATHEMATICS
Heiko Dietrich, Melissa Lee, Tomasz Popiel
{"title":"怪物的最大子群","authors":"Heiko Dietrich,&nbsp;Melissa Lee,&nbsp;Tomasz Popiel","doi":"10.1016/j.aim.2025.110214","DOIUrl":null,"url":null,"abstract":"<div><div>The classification of the maximal subgroups of the Monster <strong>M</strong> is a long-standing problem in finite group theory. According to the literature, the classification is complete apart from the question of whether <strong>M</strong> contains maximal subgroups that are almost simple with socle <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>13</mn><mo>)</mo></math></span>. However, this conclusion relies on reported claims, with unpublished proofs, that <strong>M</strong> has no maximal subgroups that are almost simple with socle <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>8</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>16</mn><mo>)</mo></math></span>, or <span><math><msub><mrow><mi>PSU</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mn>4</mn><mo>)</mo></math></span>. The aim of this paper is to settle all of these questions, and thereby complete the solution to the maximal subgroup problem for <strong>M</strong>, and for the sporadic simple groups as a whole. Specifically, we prove the existence of two new maximal subgroups of <strong>M</strong>, isomorphic to the automorphism groups of <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>13</mn><mo>)</mo></math></span> and <span><math><msub><mrow><mi>PSU</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mn>4</mn><mo>)</mo></math></span>, and we establish that <strong>M</strong> has no almost simple maximal subgroup with socle <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>8</mn><mo>)</mo></math></span> or <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>16</mn><mo>)</mo></math></span>. We also correct the claim that <strong>M</strong> has no almost simple maximal subgroup with socle <span><math><msub><mrow><mi>PSU</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mn>4</mn><mo>)</mo></math></span>, and provide evidence that the maximal subgroup <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>59</mn><mo>)</mo></math></span> (constructed in 2004) does not exist. Our proofs are supported by reproducible computations carried out using the publicly available Python package <span>mmgroup</span> for computing with <strong>M</strong> recently developed by M. Seysen. We provide explicit generators for our newly discovered maximal subgroups of <strong>M</strong> in <span>mmgroup</span> format.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"469 ","pages":"Article 110214"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The maximal subgroups of the Monster\",\"authors\":\"Heiko Dietrich,&nbsp;Melissa Lee,&nbsp;Tomasz Popiel\",\"doi\":\"10.1016/j.aim.2025.110214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The classification of the maximal subgroups of the Monster <strong>M</strong> is a long-standing problem in finite group theory. According to the literature, the classification is complete apart from the question of whether <strong>M</strong> contains maximal subgroups that are almost simple with socle <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>13</mn><mo>)</mo></math></span>. However, this conclusion relies on reported claims, with unpublished proofs, that <strong>M</strong> has no maximal subgroups that are almost simple with socle <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>8</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>16</mn><mo>)</mo></math></span>, or <span><math><msub><mrow><mi>PSU</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mn>4</mn><mo>)</mo></math></span>. The aim of this paper is to settle all of these questions, and thereby complete the solution to the maximal subgroup problem for <strong>M</strong>, and for the sporadic simple groups as a whole. Specifically, we prove the existence of two new maximal subgroups of <strong>M</strong>, isomorphic to the automorphism groups of <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>13</mn><mo>)</mo></math></span> and <span><math><msub><mrow><mi>PSU</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mn>4</mn><mo>)</mo></math></span>, and we establish that <strong>M</strong> has no almost simple maximal subgroup with socle <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>8</mn><mo>)</mo></math></span> or <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>16</mn><mo>)</mo></math></span>. We also correct the claim that <strong>M</strong> has no almost simple maximal subgroup with socle <span><math><msub><mrow><mi>PSU</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mn>4</mn><mo>)</mo></math></span>, and provide evidence that the maximal subgroup <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>59</mn><mo>)</mo></math></span> (constructed in 2004) does not exist. Our proofs are supported by reproducible computations carried out using the publicly available Python package <span>mmgroup</span> for computing with <strong>M</strong> recently developed by M. Seysen. We provide explicit generators for our newly discovered maximal subgroups of <strong>M</strong> in <span>mmgroup</span> format.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"469 \",\"pages\":\"Article 110214\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825001124\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001124","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

怪物M的极大子群的分类是有限群论中一个长期存在的问题。根据文献,除了M是否包含与socle PSL2几乎简单的最大子群的问题外,分类是完整的(13)。然而,这一结论依赖于未发表的证据的报道,即M没有与社会PSL2(8), PSL2(16)或PSU3(4)几乎简单的最大子群。本文的目的是解决所有这些问题,从而完成M的极大子群问题的解,以及零星简单群作为一个整体的解。具体地说,我们证明了M的两个新的极大子群的存在性,它们与PSL2(13)和PSU3(4)的自同构群同构,并且证明了M不存在与PSL2(8)或PSL2(16)相似的几乎简单极大子群。我们还更正了关于M不存在具有soso3(4)的几乎简单极大子群的说法,并提供了证据证明最大子群PSL2(59)(构造于2004年)不存在。我们的证明得到了可重复计算的支持,这些计算使用公开可用的Python包mmgroup进行计算,该包使用M. Seysen最近开发的M进行计算。我们以mmgroup的形式给出了新发现的M的极大子群的显式生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The maximal subgroups of the Monster
The classification of the maximal subgroups of the Monster M is a long-standing problem in finite group theory. According to the literature, the classification is complete apart from the question of whether M contains maximal subgroups that are almost simple with socle PSL2(13). However, this conclusion relies on reported claims, with unpublished proofs, that M has no maximal subgroups that are almost simple with socle PSL2(8), PSL2(16), or PSU3(4). The aim of this paper is to settle all of these questions, and thereby complete the solution to the maximal subgroup problem for M, and for the sporadic simple groups as a whole. Specifically, we prove the existence of two new maximal subgroups of M, isomorphic to the automorphism groups of PSL2(13) and PSU3(4), and we establish that M has no almost simple maximal subgroup with socle PSL2(8) or PSL2(16). We also correct the claim that M has no almost simple maximal subgroup with socle PSU3(4), and provide evidence that the maximal subgroup PSL2(59) (constructed in 2004) does not exist. Our proofs are supported by reproducible computations carried out using the publicly available Python package mmgroup for computing with M recently developed by M. Seysen. We provide explicit generators for our newly discovered maximal subgroups of M in mmgroup format.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信