Robert Dürr , Eric Otto , Rudolph L. Kok , Stefanie Duvigneau , Achim Kienle , Andreas Bück
{"title":"微生物生物聚合物生产过程控制的代理模型","authors":"Robert Dürr , Eric Otto , Rudolph L. Kok , Stefanie Duvigneau , Achim Kienle , Andreas Bück","doi":"10.1016/j.ifacol.2025.03.030","DOIUrl":null,"url":null,"abstract":"<div><div>In this contribution, the Dynamic Mode Decomposition with control (DMDc) is used to derive a surrogate model of a continuous PHA biopolymer production process based on a recently published complex process model. Here, snapshot simulation data of the original model is processed to obtain a linear surrogate model formulation using delay coordinates. The quality of the surrogate is statistically validated within simulation studies. Additionally, the influence of the of the order of delay coordinates is investigated. It is shown, that the highly nonlinear dynamics of the PHA-manufacturing process can be approximated accurately by the DMD-based model even for large variations of initial conditions and control variables. This offers the opportunity to apply well-studied and established tools from robust and optimal control in future investigations.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"59 1","pages":"Pages 169-174"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surrogate Modeling for Control of Microbial Biopolymer Production Process\",\"authors\":\"Robert Dürr , Eric Otto , Rudolph L. Kok , Stefanie Duvigneau , Achim Kienle , Andreas Bück\",\"doi\":\"10.1016/j.ifacol.2025.03.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this contribution, the Dynamic Mode Decomposition with control (DMDc) is used to derive a surrogate model of a continuous PHA biopolymer production process based on a recently published complex process model. Here, snapshot simulation data of the original model is processed to obtain a linear surrogate model formulation using delay coordinates. The quality of the surrogate is statistically validated within simulation studies. Additionally, the influence of the of the order of delay coordinates is investigated. It is shown, that the highly nonlinear dynamics of the PHA-manufacturing process can be approximated accurately by the DMD-based model even for large variations of initial conditions and control variables. This offers the opportunity to apply well-studied and established tools from robust and optimal control in future investigations.</div></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":\"59 1\",\"pages\":\"Pages 169-174\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405896325002472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896325002472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Surrogate Modeling for Control of Microbial Biopolymer Production Process
In this contribution, the Dynamic Mode Decomposition with control (DMDc) is used to derive a surrogate model of a continuous PHA biopolymer production process based on a recently published complex process model. Here, snapshot simulation data of the original model is processed to obtain a linear surrogate model formulation using delay coordinates. The quality of the surrogate is statistically validated within simulation studies. Additionally, the influence of the of the order of delay coordinates is investigated. It is shown, that the highly nonlinear dynamics of the PHA-manufacturing process can be approximated accurately by the DMD-based model even for large variations of initial conditions and control variables. This offers the opportunity to apply well-studied and established tools from robust and optimal control in future investigations.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.