动态系统数值不确定性量化的建模观点

Q3 Engineering
Dirk Langemann , Katja Tüting
{"title":"动态系统数值不确定性量化的建模观点","authors":"Dirk Langemann ,&nbsp;Katja Tüting","doi":"10.1016/j.ifacol.2025.03.055","DOIUrl":null,"url":null,"abstract":"<div><div>We present a modelling view on the numerical quantification of uncertainties in the solution of a dynamical system, which mostly consists in using a linearized update procedure for the covariance matrix. We regard the Fokker-Planck equation for the probability density of the states of the dynamical system as ground truth and the numerical method as surrogate model. We give an error estimate and show the connection to the numerical solution of ordinary differential equations. Finally, uncertainty quantification is interpreted as measurement.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"59 1","pages":"Pages 319-324"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling View on Numerical Uncertainty Quantification for Dynamical Systems\",\"authors\":\"Dirk Langemann ,&nbsp;Katja Tüting\",\"doi\":\"10.1016/j.ifacol.2025.03.055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a modelling view on the numerical quantification of uncertainties in the solution of a dynamical system, which mostly consists in using a linearized update procedure for the covariance matrix. We regard the Fokker-Planck equation for the probability density of the states of the dynamical system as ground truth and the numerical method as surrogate model. We give an error estimate and show the connection to the numerical solution of ordinary differential equations. Finally, uncertainty quantification is interpreted as measurement.</div></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":\"59 1\",\"pages\":\"Pages 319-324\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405896325002721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896325002721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种关于动态系统解中不确定性的数值量化的建模观点,主要包括对协方差矩阵使用线性化更新过程。我们将动力系统状态概率密度的Fokker-Planck方程作为基本真理,将数值方法作为替代模型。给出了误差估计,并给出了其与常微分方程数值解的联系。最后,将不确定度量化解释为测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling View on Numerical Uncertainty Quantification for Dynamical Systems
We present a modelling view on the numerical quantification of uncertainties in the solution of a dynamical system, which mostly consists in using a linearized update procedure for the covariance matrix. We regard the Fokker-Planck equation for the probability density of the states of the dynamical system as ground truth and the numerical method as surrogate model. We give an error estimate and show the connection to the numerical solution of ordinary differential equations. Finally, uncertainty quantification is interpreted as measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC-PapersOnLine
IFAC-PapersOnLine Engineering-Control and Systems Engineering
CiteScore
1.70
自引率
0.00%
发文量
1122
期刊介绍: All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信