Chunhui Zhao , Xiangjun Li , Zixin He , Chun Ye , Feng Chen , Jia Cheng
{"title":"PEG-ASO偶联物在肿瘤细胞中的有效靶向递送和迁移抑制","authors":"Chunhui Zhao , Xiangjun Li , Zixin He , Chun Ye , Feng Chen , Jia Cheng","doi":"10.1016/j.bmcl.2025.130208","DOIUrl":null,"url":null,"abstract":"<div><div>Antisense oligonucleotides (ASO) specifically bind target RNAs resulted in gene silencing, thereby inhibiting cancer cell growth. Chemical modification based on polyethylene glycol (PEG) usually improve resistance to nuclease degradation. However, the specificity and cellular uptake of PEG-conjugated ASOs for tumor cells is still a challenge. In this work, the folate (FA) and maleimide co-modified PEG was prepared and bound with thiol-modified anti-miRNA-21 ASO to form the FA-PEG-ASO conjugates by thiol-maleimide Michael addition. During the FA-PEG-ASO preparation process, removing tris-(2-carboxyethyl) phosphine hydrochloride (TCEP) is the key for the high yields. Cell imaging results showed FA-PEG-ASO internalized by the cells taken up ∼5 times higher than the control HO-PEG-ASO prepared by maleimide modified PEG and anti-miRNA-21 ASO. In addition, FA-PEG-ASO exhibited higher target cleavage and a greater reduction in tumor cell migration ability. Together, FA-PEG-ASO is a promising therapeutic platform.</div></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"122 ","pages":"Article 130208"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PEG-ASO conjugates for efficient targeted delivery and migration inhibition in Cancer cell\",\"authors\":\"Chunhui Zhao , Xiangjun Li , Zixin He , Chun Ye , Feng Chen , Jia Cheng\",\"doi\":\"10.1016/j.bmcl.2025.130208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Antisense oligonucleotides (ASO) specifically bind target RNAs resulted in gene silencing, thereby inhibiting cancer cell growth. Chemical modification based on polyethylene glycol (PEG) usually improve resistance to nuclease degradation. However, the specificity and cellular uptake of PEG-conjugated ASOs for tumor cells is still a challenge. In this work, the folate (FA) and maleimide co-modified PEG was prepared and bound with thiol-modified anti-miRNA-21 ASO to form the FA-PEG-ASO conjugates by thiol-maleimide Michael addition. During the FA-PEG-ASO preparation process, removing tris-(2-carboxyethyl) phosphine hydrochloride (TCEP) is the key for the high yields. Cell imaging results showed FA-PEG-ASO internalized by the cells taken up ∼5 times higher than the control HO-PEG-ASO prepared by maleimide modified PEG and anti-miRNA-21 ASO. In addition, FA-PEG-ASO exhibited higher target cleavage and a greater reduction in tumor cell migration ability. Together, FA-PEG-ASO is a promising therapeutic platform.</div></div>\",\"PeriodicalId\":256,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry Letters\",\"volume\":\"122 \",\"pages\":\"Article 130208\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960894X25001179\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960894X25001179","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
PEG-ASO conjugates for efficient targeted delivery and migration inhibition in Cancer cell
Antisense oligonucleotides (ASO) specifically bind target RNAs resulted in gene silencing, thereby inhibiting cancer cell growth. Chemical modification based on polyethylene glycol (PEG) usually improve resistance to nuclease degradation. However, the specificity and cellular uptake of PEG-conjugated ASOs for tumor cells is still a challenge. In this work, the folate (FA) and maleimide co-modified PEG was prepared and bound with thiol-modified anti-miRNA-21 ASO to form the FA-PEG-ASO conjugates by thiol-maleimide Michael addition. During the FA-PEG-ASO preparation process, removing tris-(2-carboxyethyl) phosphine hydrochloride (TCEP) is the key for the high yields. Cell imaging results showed FA-PEG-ASO internalized by the cells taken up ∼5 times higher than the control HO-PEG-ASO prepared by maleimide modified PEG and anti-miRNA-21 ASO. In addition, FA-PEG-ASO exhibited higher target cleavage and a greater reduction in tumor cell migration ability. Together, FA-PEG-ASO is a promising therapeutic platform.
期刊介绍:
Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.