Xinyi Li, Dongxu Jiao, Jingxiang Zhao and Xiao Zhao
{"title":"揭示由原子团和单原子组成的氧还原活性集合体:机器学习与 DFT 计算的协同作用","authors":"Xinyi Li, Dongxu Jiao, Jingxiang Zhao and Xiao Zhao","doi":"10.1039/D5QI00219B","DOIUrl":null,"url":null,"abstract":"<p >Catalytic ensembles combining nanoparticles/clusters and atomically dispersed metal sites have demonstrated promising performance for various reactions. However, the optimal combinations between nanoparticles/clusters and metal single atoms remain unexplored. Herein, we integrate machine learning (ML) with density functional theory (DFT) calculations to explore the active ensembles consisting of platinum-based metallic clusters (Pt<small><sub>3</sub></small>M) and nitrogen-coordinated metal single atoms on the N-doped graphene (NC) matrix (Pt<small><sub>3</sub></small>M-M′NC). A total of 1521 candidates were screened using readily available metal properties to estimate the oxygen reduction reaction overpotential (<em>η</em><small><sup>ORR</sup></small>), resulting in the identification of 24 active Pt<small><sub>3</sub></small>M-M′NC catalysts. Furthermore, the durability based on the <em>ab initio</em> molecular dynamics (AIMD) simulations, dissolution potential (<em>U</em><small><sub>diss</sub></small>), and cluster energies (<em>E</em><small><sub>cluster</sub></small>) was screened to identify four active and durable Pt<small><sub>3</sub></small>M-M′NC ensembles. The quantitative relationship between <em>η</em><small><sup>ORR</sup></small> and metal features is deduced, enabling rapid and cost-effective screening of the optimal Pt<small><sub>3</sub></small>M-M′NC ensemble for the ORR. This work provides a comprehensive framework for the rational design of efficient and durable catalysts for oxygen reduction, leveraging the synergistic power of machine learning and DFT calculations to optimize catalytic ensembles with high performance.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 10","pages":" 3704-3713"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling active ensembles consisting of clusters and single atoms for oxygen reduction: a synergy of machine learning and DFT calculations†\",\"authors\":\"Xinyi Li, Dongxu Jiao, Jingxiang Zhao and Xiao Zhao\",\"doi\":\"10.1039/D5QI00219B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Catalytic ensembles combining nanoparticles/clusters and atomically dispersed metal sites have demonstrated promising performance for various reactions. However, the optimal combinations between nanoparticles/clusters and metal single atoms remain unexplored. Herein, we integrate machine learning (ML) with density functional theory (DFT) calculations to explore the active ensembles consisting of platinum-based metallic clusters (Pt<small><sub>3</sub></small>M) and nitrogen-coordinated metal single atoms on the N-doped graphene (NC) matrix (Pt<small><sub>3</sub></small>M-M′NC). A total of 1521 candidates were screened using readily available metal properties to estimate the oxygen reduction reaction overpotential (<em>η</em><small><sup>ORR</sup></small>), resulting in the identification of 24 active Pt<small><sub>3</sub></small>M-M′NC catalysts. Furthermore, the durability based on the <em>ab initio</em> molecular dynamics (AIMD) simulations, dissolution potential (<em>U</em><small><sub>diss</sub></small>), and cluster energies (<em>E</em><small><sub>cluster</sub></small>) was screened to identify four active and durable Pt<small><sub>3</sub></small>M-M′NC ensembles. The quantitative relationship between <em>η</em><small><sup>ORR</sup></small> and metal features is deduced, enabling rapid and cost-effective screening of the optimal Pt<small><sub>3</sub></small>M-M′NC ensemble for the ORR. This work provides a comprehensive framework for the rational design of efficient and durable catalysts for oxygen reduction, leveraging the synergistic power of machine learning and DFT calculations to optimize catalytic ensembles with high performance.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 10\",\"pages\":\" 3704-3713\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d5qi00219b\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d5qi00219b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
纳米颗粒/团簇与原子分散的金属位点相结合的催化体系在各种反应中表现出了良好的性能。然而,纳米颗粒/簇与金属单原子之间的最佳组合仍未被探索。在此,我们将机器学习(ML)与密度泛函理论(DFT)计算相结合,探索了氮掺杂石墨烯(NC)基体(Pt3M- m 'NC)上由铂基金属团簇(Pt3M)和氮配位金属单原子组成的有源系综。利用现成的金属性质来估计氧还原反应过电位(ηORR),共筛选了1521种候选催化剂,最终鉴定出24种活性Pt3M-M 'NC催化剂。此外,基于从头算分子动力学(AIMD)模拟、溶解势(Udiss)和簇能(Ecluster)筛选了4个活性持久的Pt3M-M 'NC体系。推导出ηORR与金属特征之间的定量关系,从而能够快速、经济地筛选最优的Pt3M-M 'NC ORR组合。这项工作为合理设计高效耐用的氧还原催化剂提供了一个全面的框架,利用机器学习和DFT计算的协同能力来优化高性能的催化剂组合。
Unraveling active ensembles consisting of clusters and single atoms for oxygen reduction: a synergy of machine learning and DFT calculations†
Catalytic ensembles combining nanoparticles/clusters and atomically dispersed metal sites have demonstrated promising performance for various reactions. However, the optimal combinations between nanoparticles/clusters and metal single atoms remain unexplored. Herein, we integrate machine learning (ML) with density functional theory (DFT) calculations to explore the active ensembles consisting of platinum-based metallic clusters (Pt3M) and nitrogen-coordinated metal single atoms on the N-doped graphene (NC) matrix (Pt3M-M′NC). A total of 1521 candidates were screened using readily available metal properties to estimate the oxygen reduction reaction overpotential (ηORR), resulting in the identification of 24 active Pt3M-M′NC catalysts. Furthermore, the durability based on the ab initio molecular dynamics (AIMD) simulations, dissolution potential (Udiss), and cluster energies (Ecluster) was screened to identify four active and durable Pt3M-M′NC ensembles. The quantitative relationship between ηORR and metal features is deduced, enabling rapid and cost-effective screening of the optimal Pt3M-M′NC ensemble for the ORR. This work provides a comprehensive framework for the rational design of efficient and durable catalysts for oxygen reduction, leveraging the synergistic power of machine learning and DFT calculations to optimize catalytic ensembles with high performance.