{"title":"波函数分支:当你不能区分纯状态和混合状态时","authors":"Jordan K. Taylor, Ian P. McCulloch","doi":"10.22331/q-2025-03-25-1670","DOIUrl":null,"url":null,"abstract":"We propose a definition of wavefunction \"branchings\": quantum superpositions which can't be feasibly distinguished from the corresponding mixed state, even under time evolution. Our definition is largely independent of interpretations, requiring only that it takes many more local gates to swap branches than to distinguish them. We give several examples of states admitting such branch decompositions. Under our definition, we argue that attempts to get relative-phase information between branches will fail without frequent active error correction, that branches are effectively the opposite of good error-correcting codes, that branches effectively only grow further apart in time under natural evolution, that branches tend to absorb spatial entanglement, that branching is stronger in the presence of conserved quantities, and that branching implies effective irreversibility. Identifying these branch decompositions in many-body quantum states could shed light on the emergence of classicality, provide a metric for experimental tests at the quantum/ classical boundary, and allow for longer numerical time evolution simulations. We see this work as a generalization of the basic ideas of environmentally-induced decoherence to situations with no clear system/ environment split.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"24 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavefunction branching: when you can’t tell pure states from mixed states\",\"authors\":\"Jordan K. Taylor, Ian P. McCulloch\",\"doi\":\"10.22331/q-2025-03-25-1670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a definition of wavefunction \\\"branchings\\\": quantum superpositions which can't be feasibly distinguished from the corresponding mixed state, even under time evolution. Our definition is largely independent of interpretations, requiring only that it takes many more local gates to swap branches than to distinguish them. We give several examples of states admitting such branch decompositions. Under our definition, we argue that attempts to get relative-phase information between branches will fail without frequent active error correction, that branches are effectively the opposite of good error-correcting codes, that branches effectively only grow further apart in time under natural evolution, that branches tend to absorb spatial entanglement, that branching is stronger in the presence of conserved quantities, and that branching implies effective irreversibility. Identifying these branch decompositions in many-body quantum states could shed light on the emergence of classicality, provide a metric for experimental tests at the quantum/ classical boundary, and allow for longer numerical time evolution simulations. We see this work as a generalization of the basic ideas of environmentally-induced decoherence to situations with no clear system/ environment split.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-03-25-1670\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-03-25-1670","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Wavefunction branching: when you can’t tell pure states from mixed states
We propose a definition of wavefunction "branchings": quantum superpositions which can't be feasibly distinguished from the corresponding mixed state, even under time evolution. Our definition is largely independent of interpretations, requiring only that it takes many more local gates to swap branches than to distinguish them. We give several examples of states admitting such branch decompositions. Under our definition, we argue that attempts to get relative-phase information between branches will fail without frequent active error correction, that branches are effectively the opposite of good error-correcting codes, that branches effectively only grow further apart in time under natural evolution, that branches tend to absorb spatial entanglement, that branching is stronger in the presence of conserved quantities, and that branching implies effective irreversibility. Identifying these branch decompositions in many-body quantum states could shed light on the emergence of classicality, provide a metric for experimental tests at the quantum/ classical boundary, and allow for longer numerical time evolution simulations. We see this work as a generalization of the basic ideas of environmentally-induced decoherence to situations with no clear system/ environment split.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.