Darren Korbie, Clare Stirzaker, Oleg Gluz, Christine zu Eulenburg, Ulrike Nitz, Matthias Christgen, Sherko Kuemmel, Eva-Maria Grischke, Helmut Forstbauer, Michael Braun, Mathias Warm, John Hackmann, Christoph Uleer, Bahriye Aktas, Claudia Schumacher, Rachel Wuerstlein, Enrico Pelz, Hans Heinrich Kreipe, Susan J. Clark, Matt Trau, Monika Graeser, Nadia Harbeck
{"title":"Immunomodulatory gene networks predict treatment response and survival to de-escalated, anthracycline-free neoadjuvant chemotherapy in triple-negative breast cancer in the WSG-ADAPT-TN trial","authors":"Darren Korbie, Clare Stirzaker, Oleg Gluz, Christine zu Eulenburg, Ulrike Nitz, Matthias Christgen, Sherko Kuemmel, Eva-Maria Grischke, Helmut Forstbauer, Michael Braun, Mathias Warm, John Hackmann, Christoph Uleer, Bahriye Aktas, Claudia Schumacher, Rachel Wuerstlein, Enrico Pelz, Hans Heinrich Kreipe, Susan J. Clark, Matt Trau, Monika Graeser, Nadia Harbeck","doi":"10.1186/s12943-025-02275-0","DOIUrl":null,"url":null,"abstract":"Anthracycline-containing neoadjuvant chemotherapy (NACT) is the standard treatment for early triple-negative breast cancer (eTNBC); however, it is associated with substantial toxicity. We performed whole transcriptome profiling of baseline tumor biopsies to identify gene networks predictive and prognostic for pathological complete response (pCR) and survival after de-escalated, anthracycline-free NACT in the WSG-ADAPT-TN trial (NCT01815242). eTNBC patients (cT1c-cT4c, cN +) were randomized to 12 weeks of nab-paclitaxel + gemcitabine (n = 182) or nab-paclitaxel + carboplatin (n = 154). The primary endpoint was pCR (ypT0/is, ypN0), and the secondary endpoints included survival and translational research. AmpliSeq RNA sequencing, allowing simultaneous analysis of the expression of > 20,000 genes, was performed in 135 patients. Differentially expressed genes were evaluated in training (n = 67) and validation (n = 68) sets, and a polygenic score (PS) for prediction of pCR (PS:pCR) and a PS for prediction of invasive disease-free survival (PS:iDFS) were found. 49/135 (36.3%) patients had pCR; 30 iDFS events occurred during 60-month median follow-up. Immune recruitment and viral defense gene networks were strongly associated with pCR, while metabolic pathways were associated with survival. PS:pCR and PS:iDFS predominantly included immune-related genes. Diagnostic accuracy (ROC AUC) in the validation cohort was 83% for PS:pCR and 64% for PS:iDFS. At optimized cut-off, PS:pCR identified a group with a 67.7% pCR rate (vs. 10.8%; p < .0001), and PS:iDFS detected a group with 79.5% (95%CI 64.1%, 88.8%) 5-year iDFS rate (vs. 55.0%, 95%CI 29.8%, 74.5%; p = .04). Polygenic scores incorporating immunoregulatory genes can predict pCR and survival and represent an opportunity to select patients for de-escalated, anthracycline-free NACT. This transcriptome network analysis also identifies potential new targets for personalized medicine approaches in patients without response to NACT. NCT01815242.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"28 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02275-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Immunomodulatory gene networks predict treatment response and survival to de-escalated, anthracycline-free neoadjuvant chemotherapy in triple-negative breast cancer in the WSG-ADAPT-TN trial
Anthracycline-containing neoadjuvant chemotherapy (NACT) is the standard treatment for early triple-negative breast cancer (eTNBC); however, it is associated with substantial toxicity. We performed whole transcriptome profiling of baseline tumor biopsies to identify gene networks predictive and prognostic for pathological complete response (pCR) and survival after de-escalated, anthracycline-free NACT in the WSG-ADAPT-TN trial (NCT01815242). eTNBC patients (cT1c-cT4c, cN +) were randomized to 12 weeks of nab-paclitaxel + gemcitabine (n = 182) or nab-paclitaxel + carboplatin (n = 154). The primary endpoint was pCR (ypT0/is, ypN0), and the secondary endpoints included survival and translational research. AmpliSeq RNA sequencing, allowing simultaneous analysis of the expression of > 20,000 genes, was performed in 135 patients. Differentially expressed genes were evaluated in training (n = 67) and validation (n = 68) sets, and a polygenic score (PS) for prediction of pCR (PS:pCR) and a PS for prediction of invasive disease-free survival (PS:iDFS) were found. 49/135 (36.3%) patients had pCR; 30 iDFS events occurred during 60-month median follow-up. Immune recruitment and viral defense gene networks were strongly associated with pCR, while metabolic pathways were associated with survival. PS:pCR and PS:iDFS predominantly included immune-related genes. Diagnostic accuracy (ROC AUC) in the validation cohort was 83% for PS:pCR and 64% for PS:iDFS. At optimized cut-off, PS:pCR identified a group with a 67.7% pCR rate (vs. 10.8%; p < .0001), and PS:iDFS detected a group with 79.5% (95%CI 64.1%, 88.8%) 5-year iDFS rate (vs. 55.0%, 95%CI 29.8%, 74.5%; p = .04). Polygenic scores incorporating immunoregulatory genes can predict pCR and survival and represent an opportunity to select patients for de-escalated, anthracycline-free NACT. This transcriptome network analysis also identifies potential new targets for personalized medicine approaches in patients without response to NACT. NCT01815242.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.