通过细粒度噪声估计的无校准原始图像去噪。

Yunhao Zou, Ying Fu, Yulun Zhang, Tao Zhang, Chenggang Yan, Radu Timofte
{"title":"通过细粒度噪声估计的无校准原始图像去噪。","authors":"Yunhao Zou, Ying Fu, Yulun Zhang, Tao Zhang, Chenggang Yan, Radu Timofte","doi":"10.1109/TPAMI.2025.3550264","DOIUrl":null,"url":null,"abstract":"<p><p>Image denoising has progressed significantly due to the development of effective deep denoisers. To improve the performance in real-world scenarios, recent trends prefer to formulate superior noise models to generate realistic training data, or estimate noise levels to steer non-blind denoisers. In this paper, we bridge both strategies by presenting an innovative noise estimation and realistic noise synthesis pipeline. Specifically, we integrates a fine-grained statistical noise model and contrastive learning strategy, with a unique data augmentation to enhance learning ability. Then, we use this model to estimate noise parameters on evaluation dataset, which are subsequently used to craft camera-specific noise distribution and synthesize realistic noise. One distinguishing feature of our methodology is its adaptability: our pre-trained model can directly estimate unknown cameras, making it possible to unfamiliar sensor noise modeling using only testing images, without calibration frames or paired training data. Another highlight is our attempt in estimating parameters for fine-grained noise models, which extends the applicability to even more challenging low-light conditions. Through empirical testing, our calibration-free pipeline demonstrates effectiveness in both normal and low-light scenarios, further solidifying its utility in real-world noise synthesis and denoising tasks.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration-Free Raw Image Denoising via Fine-Grained Noise Estimation.\",\"authors\":\"Yunhao Zou, Ying Fu, Yulun Zhang, Tao Zhang, Chenggang Yan, Radu Timofte\",\"doi\":\"10.1109/TPAMI.2025.3550264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Image denoising has progressed significantly due to the development of effective deep denoisers. To improve the performance in real-world scenarios, recent trends prefer to formulate superior noise models to generate realistic training data, or estimate noise levels to steer non-blind denoisers. In this paper, we bridge both strategies by presenting an innovative noise estimation and realistic noise synthesis pipeline. Specifically, we integrates a fine-grained statistical noise model and contrastive learning strategy, with a unique data augmentation to enhance learning ability. Then, we use this model to estimate noise parameters on evaluation dataset, which are subsequently used to craft camera-specific noise distribution and synthesize realistic noise. One distinguishing feature of our methodology is its adaptability: our pre-trained model can directly estimate unknown cameras, making it possible to unfamiliar sensor noise modeling using only testing images, without calibration frames or paired training data. Another highlight is our attempt in estimating parameters for fine-grained noise models, which extends the applicability to even more challenging low-light conditions. Through empirical testing, our calibration-free pipeline demonstrates effectiveness in both normal and low-light scenarios, further solidifying its utility in real-world noise synthesis and denoising tasks.</p>\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPAMI.2025.3550264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3550264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于有效的深度去噪器的发展,图像去噪取得了重大进展。为了提高在现实场景中的性能,最近的趋势倾向于制定更好的噪声模型来生成真实的训练数据,或者估计噪声水平来引导非盲去噪器。在本文中,我们通过提出一种创新的噪声估计和现实的噪声合成管道来桥接这两种策略。具体而言,我们将细粒度统计噪声模型与对比学习策略相结合,并采用独特的数据增强方法来增强学习能力。然后,我们利用该模型估计评价数据集上的噪声参数,然后使用该参数来绘制相机特定的噪声分布并合成真实的噪声。我们的方法的一个显著特点是它的适应性:我们的预训练模型可以直接估计未知的相机,使得不熟悉的传感器噪声建模只使用测试图像,而不需要校准帧或配对训练数据。另一个亮点是我们尝试估计细粒度噪声模型的参数,这将适用性扩展到更具挑战性的低光条件。通过经验测试,我们的无校准管道在正常和低光情况下都证明了有效性,进一步巩固了其在现实世界噪声合成和去噪任务中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibration-Free Raw Image Denoising via Fine-Grained Noise Estimation.

Image denoising has progressed significantly due to the development of effective deep denoisers. To improve the performance in real-world scenarios, recent trends prefer to formulate superior noise models to generate realistic training data, or estimate noise levels to steer non-blind denoisers. In this paper, we bridge both strategies by presenting an innovative noise estimation and realistic noise synthesis pipeline. Specifically, we integrates a fine-grained statistical noise model and contrastive learning strategy, with a unique data augmentation to enhance learning ability. Then, we use this model to estimate noise parameters on evaluation dataset, which are subsequently used to craft camera-specific noise distribution and synthesize realistic noise. One distinguishing feature of our methodology is its adaptability: our pre-trained model can directly estimate unknown cameras, making it possible to unfamiliar sensor noise modeling using only testing images, without calibration frames or paired training data. Another highlight is our attempt in estimating parameters for fine-grained noise models, which extends the applicability to even more challenging low-light conditions. Through empirical testing, our calibration-free pipeline demonstrates effectiveness in both normal and low-light scenarios, further solidifying its utility in real-world noise synthesis and denoising tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信