IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2025-03-10 eCollection Date: 2025-01-01 DOI:10.3389/fbinf.2025.1485797
Philomina Princiya Mascarenhas, M S Sannidhan, Ancilla J Pinto, Dabis Camero, Jason Elroy Martis
{"title":"Improving acne severity detection: a GAN framework with contour accentuation for image deblurring.","authors":"Philomina Princiya Mascarenhas, M S Sannidhan, Ancilla J Pinto, Dabis Camero, Jason Elroy Martis","doi":"10.3389/fbinf.2025.1485797","DOIUrl":null,"url":null,"abstract":"<p><p>Teledermatology, a growing field of telemedicine, is widely used to diagnose skin conditions like acne, especially in young adults. Accurate diagnosis depends on clear images, but blurring is a common issue in most images. In particular, for acne images, it obscures acne spots and facial contours, leading to inaccurate diagnosis. Traditional methods to address blurring fail to recover fine details, making them unsuitable for teledermatology. To resolve this issue, the study proposes a framework based on generative networks. It comprises three main steps: the Contour Accentuation Technique, which outlines facial features to create a blurred sketch; a deblurring module, which enhances the sketch's clarity; and an image translator, which converts the refined sketch into a color photo that effectively highlights acne spots. Tested on Acne Recognition Dataset, the framework achieved an SSIM of 0.83, a PSNR of 22.35 dB, and an FID score of 10.77, demonstrating its ability to produce clear images for accurate acne diagnosis. Further, the details of research can be found on the project homepage at: https://github.com/Princiya1990/CATDeblurring.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"5 ","pages":"1485797"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931032/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2025.1485797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

远程皮肤病学是一个不断发展的远程医疗领域,被广泛用于诊断痤疮等皮肤病,尤其是年轻人的皮肤病。准确的诊断取决于清晰的图像,但大多数图像都存在模糊问题。特别是在痤疮图像中,模糊会遮盖痤疮斑点和面部轮廓,导致诊断不准确。解决模糊问题的传统方法无法恢复精细细节,因此不适合远程皮肤学。为了解决这个问题,本研究提出了一个基于生成网络的框架。它包括三个主要步骤:轮廓强调技术(Contour Accentuation Technique),用于勾勒面部特征以创建模糊草图;去模糊模块(Deblurring module),用于增强草图的清晰度;以及图像转换器(Image translator),用于将精细草图转换为彩色照片,以有效突出痤疮斑点。在痤疮识别数据集上进行测试后,该框架的 SSIM 为 0.83,PSNR 为 22.35 dB,FID 为 10.77,证明了其生成清晰图像以准确诊断痤疮的能力。更多研究详情,请访问项目主页:https://github.com/Princiya1990/CATDeblurring。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving acne severity detection: a GAN framework with contour accentuation for image deblurring.

Teledermatology, a growing field of telemedicine, is widely used to diagnose skin conditions like acne, especially in young adults. Accurate diagnosis depends on clear images, but blurring is a common issue in most images. In particular, for acne images, it obscures acne spots and facial contours, leading to inaccurate diagnosis. Traditional methods to address blurring fail to recover fine details, making them unsuitable for teledermatology. To resolve this issue, the study proposes a framework based on generative networks. It comprises three main steps: the Contour Accentuation Technique, which outlines facial features to create a blurred sketch; a deblurring module, which enhances the sketch's clarity; and an image translator, which converts the refined sketch into a color photo that effectively highlights acne spots. Tested on Acne Recognition Dataset, the framework achieved an SSIM of 0.83, a PSNR of 22.35 dB, and an FID score of 10.77, demonstrating its ability to produce clear images for accurate acne diagnosis. Further, the details of research can be found on the project homepage at: https://github.com/Princiya1990/CATDeblurring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信