OLIVE:对象级上下文视觉嵌入。

Timothy Ossowski, Junjie Hu
{"title":"OLIVE:对象级上下文视觉嵌入。","authors":"Timothy Ossowski, Junjie Hu","doi":"10.18653/v1/2024.acl-long.282","DOIUrl":null,"url":null,"abstract":"<p><p>Recent generalist vision-language models (VLMs) have demonstrated impressive reasoning capabilities across diverse multimodal tasks. However, these models still struggle with fine-grained object level understanding and grounding. In terms of modeling, existing VLMs implicitly align text tokens with image patch tokens, which is ineffective for embedding alignment at the same granularity and inevitably introduces noisy spurious background features. Additionally, these models struggle when generalizing to unseen visual concepts and may not be reliable for domain-specific tasks without further fine-tuning. To address these limitations, we propose a novel method to prompt large language models with in-context visual object vectors, thereby enabling controllable object level reasoning. This eliminates the necessity of fusing a lengthy array of image patch features and significantly speeds up training. Furthermore, we propose region-level retrieval using our object representations, facilitating rapid adaptation to new objects without additional training. Our experiments reveal that our method achieves competitive referring object classification and captioning performance, while also offering zero-shot generalization and robustness to visually challenging contexts.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"2024 ","pages":"5170-5185"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931571/pdf/","citationCount":"0","resultStr":"{\"title\":\"OLIVE: Object Level In-Context Visual Embeddings.\",\"authors\":\"Timothy Ossowski, Junjie Hu\",\"doi\":\"10.18653/v1/2024.acl-long.282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent generalist vision-language models (VLMs) have demonstrated impressive reasoning capabilities across diverse multimodal tasks. However, these models still struggle with fine-grained object level understanding and grounding. In terms of modeling, existing VLMs implicitly align text tokens with image patch tokens, which is ineffective for embedding alignment at the same granularity and inevitably introduces noisy spurious background features. Additionally, these models struggle when generalizing to unseen visual concepts and may not be reliable for domain-specific tasks without further fine-tuning. To address these limitations, we propose a novel method to prompt large language models with in-context visual object vectors, thereby enabling controllable object level reasoning. This eliminates the necessity of fusing a lengthy array of image patch features and significantly speeds up training. Furthermore, we propose region-level retrieval using our object representations, facilitating rapid adaptation to new objects without additional training. Our experiments reveal that our method achieves competitive referring object classification and captioning performance, while also offering zero-shot generalization and robustness to visually challenging contexts.</p>\",\"PeriodicalId\":74541,\"journal\":{\"name\":\"Proceedings of the conference. Association for Computational Linguistics. Meeting\",\"volume\":\"2024 \",\"pages\":\"5170-5185\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931571/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the conference. Association for Computational Linguistics. Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2024.acl-long.282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2024.acl-long.282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的通才视觉语言模型(vlm)在不同的多模态任务中展示了令人印象深刻的推理能力。然而,这些模型仍然在细粒度对象级别的理解和基础上挣扎。在建模方面,现有的vlm隐式地将文本标记与图像补丁标记对齐,这对于在相同粒度下嵌入对齐是无效的,并且不可避免地引入嘈杂的虚假背景特征。此外,当泛化到看不见的视觉概念时,这些模型会遇到困难,并且如果没有进一步的微调,对于特定领域的任务可能不可靠。为了解决这些限制,我们提出了一种新的方法来提示具有上下文视觉对象向量的大型语言模型,从而实现可控的对象级推理。这消除了融合一长串图像补丁特征的必要性,并显著加快了训练速度。此外,我们建议使用我们的对象表示进行区域级检索,从而在不需要额外训练的情况下快速适应新对象。我们的实验表明,我们的方法实现了竞争性参考对象分类和字幕性能,同时还提供了零射击泛化和鲁棒性,以应对视觉上具有挑战性的上下文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OLIVE: Object Level In-Context Visual Embeddings.

Recent generalist vision-language models (VLMs) have demonstrated impressive reasoning capabilities across diverse multimodal tasks. However, these models still struggle with fine-grained object level understanding and grounding. In terms of modeling, existing VLMs implicitly align text tokens with image patch tokens, which is ineffective for embedding alignment at the same granularity and inevitably introduces noisy spurious background features. Additionally, these models struggle when generalizing to unseen visual concepts and may not be reliable for domain-specific tasks without further fine-tuning. To address these limitations, we propose a novel method to prompt large language models with in-context visual object vectors, thereby enabling controllable object level reasoning. This eliminates the necessity of fusing a lengthy array of image patch features and significantly speeds up training. Furthermore, we propose region-level retrieval using our object representations, facilitating rapid adaptation to new objects without additional training. Our experiments reveal that our method achieves competitive referring object classification and captioning performance, while also offering zero-shot generalization and robustness to visually challenging contexts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信