采用大型语言模型的新一代患者报告结果测量方法。

IF 2.4 Q2 HEALTH CARE SCIENCES & SERVICES
Jan Henrik Terheyden, Maren Pielka, Tobias Schneider, Frank G Holz, Rafet Sifa
{"title":"采用大型语言模型的新一代患者报告结果测量方法。","authors":"Jan Henrik Terheyden, Maren Pielka, Tobias Schneider, Frank G Holz, Rafet Sifa","doi":"10.1186/s41687-025-00867-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patient-reported outcome measures (PROMs) are cornerstones of patient-centered clinical medicine and reflect patients' abilities, difficulties, perceptions and behaviors. The highly structured questionnaire format of PROMs currently limits their real-world validity and acceptability to patients, which becomes increasingly relevant with the high clinical interest in PROM data. In this short commentary, we aim to demonstrate the potential use of large language models (LLMs) in the context of PROM data collection and interpretation.</p><p><strong>Main body: </strong>The popularization of LLMs enables the development of a new generation of PROMs generated and administered through digital technology that interact with patients and score their responses in real time based on artificial intelligence. LLM-PROMs will need to be developed with multi-stakeholder input and careful validation against established PROMs. LLM-PROMs could complement traditional PROMs particularly in real-world clinical applications.</p><p><strong>Conclusion: </strong>LLM-PROMs could allow quantifying patient-relevant dimensions based on less structured contents and foster the use of patient-reported data in digital, clinical applications of PROMs.</p>","PeriodicalId":36660,"journal":{"name":"Journal of Patient-Reported Outcomes","volume":"9 1","pages":"34"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933620/pdf/","citationCount":"0","resultStr":"{\"title\":\"A new generation of patient-reported outcome measures with large language models.\",\"authors\":\"Jan Henrik Terheyden, Maren Pielka, Tobias Schneider, Frank G Holz, Rafet Sifa\",\"doi\":\"10.1186/s41687-025-00867-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Patient-reported outcome measures (PROMs) are cornerstones of patient-centered clinical medicine and reflect patients' abilities, difficulties, perceptions and behaviors. The highly structured questionnaire format of PROMs currently limits their real-world validity and acceptability to patients, which becomes increasingly relevant with the high clinical interest in PROM data. In this short commentary, we aim to demonstrate the potential use of large language models (LLMs) in the context of PROM data collection and interpretation.</p><p><strong>Main body: </strong>The popularization of LLMs enables the development of a new generation of PROMs generated and administered through digital technology that interact with patients and score their responses in real time based on artificial intelligence. LLM-PROMs will need to be developed with multi-stakeholder input and careful validation against established PROMs. LLM-PROMs could complement traditional PROMs particularly in real-world clinical applications.</p><p><strong>Conclusion: </strong>LLM-PROMs could allow quantifying patient-relevant dimensions based on less structured contents and foster the use of patient-reported data in digital, clinical applications of PROMs.</p>\",\"PeriodicalId\":36660,\"journal\":{\"name\":\"Journal of Patient-Reported Outcomes\",\"volume\":\"9 1\",\"pages\":\"34\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933620/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Patient-Reported Outcomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41687-025-00867-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Patient-Reported Outcomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41687-025-00867-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

背景:患者报告结果测量(PROMs)是以患者为中心的临床医学的基石,反映了患者的能力、困难、认知和行为。PROM的高度结构化的问卷格式目前限制了其在现实世界中的有效性和患者的可接受性,这与PROM数据的高度临床兴趣越来越相关。在这篇简短的评论中,我们的目标是展示大型语言模型(llm)在PROM数据收集和解释上下文中的潜在用途。主体:法学硕士的普及使得通过数字技术生成和管理的新一代法学硕士得以发展,这些法学硕士与患者互动,并基于人工智能对患者的反应进行实时评分。llm - prom需要在多方利益相关者的参与下进行开发,并对已建立的prom进行仔细验证。llm - prom可以补充传统的prom,特别是在现实世界的临床应用中。结论:LLM-PROMs可以基于较少结构化的内容对患者相关维度进行量化,并促进患者报告数据在PROMs的数字化临床应用中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new generation of patient-reported outcome measures with large language models.

Background: Patient-reported outcome measures (PROMs) are cornerstones of patient-centered clinical medicine and reflect patients' abilities, difficulties, perceptions and behaviors. The highly structured questionnaire format of PROMs currently limits their real-world validity and acceptability to patients, which becomes increasingly relevant with the high clinical interest in PROM data. In this short commentary, we aim to demonstrate the potential use of large language models (LLMs) in the context of PROM data collection and interpretation.

Main body: The popularization of LLMs enables the development of a new generation of PROMs generated and administered through digital technology that interact with patients and score their responses in real time based on artificial intelligence. LLM-PROMs will need to be developed with multi-stakeholder input and careful validation against established PROMs. LLM-PROMs could complement traditional PROMs particularly in real-world clinical applications.

Conclusion: LLM-PROMs could allow quantifying patient-relevant dimensions based on less structured contents and foster the use of patient-reported data in digital, clinical applications of PROMs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Patient-Reported Outcomes
Journal of Patient-Reported Outcomes Health Professions-Health Information Management
CiteScore
3.80
自引率
7.40%
发文量
120
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信