基于常规收集的健康数据对算法进行多管辖区可行性评估的最低报告要素:加拿大健康数据研究网络建议。

IF 1.6 Q3 HEALTH CARE SCIENCES & SERVICES
International Journal of Population Data Science Pub Date : 2025-01-28 eCollection Date: 2025-01-01 DOI:10.23889/ijpds.v10i2.2466
Naomi C Hamm, Sharon Bartholomew, Yinshan Zhao, Sandra Peterson, Saeed Al-Azazi, Kimberlyn McGrail, Lisa M Lix
{"title":"基于常规收集的健康数据对算法进行多管辖区可行性评估的最低报告要素:加拿大健康数据研究网络建议。","authors":"Naomi C Hamm, Sharon Bartholomew, Yinshan Zhao, Sandra Peterson, Saeed Al-Azazi, Kimberlyn McGrail, Lisa M Lix","doi":"10.23889/ijpds.v10i2.2466","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Research and surveillance using routinely collected health data rely on algorithms or definitions to ascertain disease cases or health measures. Whenever algorithm validation studies are not possible due to the unavailability of a reference standard, algorithm feasibility studies can be used to create and assess algorithms for use in more than one population or jurisdiction. Publication of the methods used to conduct feasibility studies is critical for reproducibility and transparency. Existing guidelines applicable to feasibility studies include the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) and REporting of studies Conducted using Observational Routinely collected health Data (RECORD) guidelines. These guidelines may benefit from additional elements that capture aspects particular to multi-jurisdiction algorithm feasibility studies and ensure their reproducibility. The aim of this paper is to identify the minimum elements for reporting feasibility studies to ensure reproducibility and transparency.</p><p><strong>Methods: </strong>A subcommittee of four individuals with expertise in routinely collected health data, multi-jurisdiction health research, and algorithm development and implementation was formed from Health Data Research Network (HDRN) Canada's Algorithms and Harmonized Data Working Group (AHD-WG). The subcommittee reviewed items within the STROBE and RECORD guidelines and evaluated these items against published feasibility studies. Items to ensure transparent reporting of feasibility studies not contained within STROBE or RECORD guidelines were identified through consensus by subcommittee members using the Nominal Group Technique. The AHD-WG reviewed and approved these additional recommended elements.</p><p><strong>Results: </strong>Eleven new recommended elements were identified: one element for the title and abstract, one for the introduction, five for the methods, and four for the results sections. Recommended elements primarily addressed reporting jurisdictional data variabilities, data harmonization methods, and algorithm implementation techniques.</p><p><strong>Significance: </strong>Implementation of these recommended elements, alongside the RECORD guidelines, is intended to encourage consistent publication of methods that support reproducibility, as well as increase comparability of algorithms and their use in national and international studies.</p>","PeriodicalId":36483,"journal":{"name":"International Journal of Population Data Science","volume":"10 2","pages":"2466"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931606/pdf/","citationCount":"0","resultStr":"{\"title\":\"Minimum elements for reporting a multi-jurisdiction feasibility assessment of algorithms based on routinely collected health data: Health Data Research Network Canada recommendations.\",\"authors\":\"Naomi C Hamm, Sharon Bartholomew, Yinshan Zhao, Sandra Peterson, Saeed Al-Azazi, Kimberlyn McGrail, Lisa M Lix\",\"doi\":\"10.23889/ijpds.v10i2.2466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Research and surveillance using routinely collected health data rely on algorithms or definitions to ascertain disease cases or health measures. Whenever algorithm validation studies are not possible due to the unavailability of a reference standard, algorithm feasibility studies can be used to create and assess algorithms for use in more than one population or jurisdiction. Publication of the methods used to conduct feasibility studies is critical for reproducibility and transparency. Existing guidelines applicable to feasibility studies include the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) and REporting of studies Conducted using Observational Routinely collected health Data (RECORD) guidelines. These guidelines may benefit from additional elements that capture aspects particular to multi-jurisdiction algorithm feasibility studies and ensure their reproducibility. The aim of this paper is to identify the minimum elements for reporting feasibility studies to ensure reproducibility and transparency.</p><p><strong>Methods: </strong>A subcommittee of four individuals with expertise in routinely collected health data, multi-jurisdiction health research, and algorithm development and implementation was formed from Health Data Research Network (HDRN) Canada's Algorithms and Harmonized Data Working Group (AHD-WG). The subcommittee reviewed items within the STROBE and RECORD guidelines and evaluated these items against published feasibility studies. Items to ensure transparent reporting of feasibility studies not contained within STROBE or RECORD guidelines were identified through consensus by subcommittee members using the Nominal Group Technique. The AHD-WG reviewed and approved these additional recommended elements.</p><p><strong>Results: </strong>Eleven new recommended elements were identified: one element for the title and abstract, one for the introduction, five for the methods, and four for the results sections. Recommended elements primarily addressed reporting jurisdictional data variabilities, data harmonization methods, and algorithm implementation techniques.</p><p><strong>Significance: </strong>Implementation of these recommended elements, alongside the RECORD guidelines, is intended to encourage consistent publication of methods that support reproducibility, as well as increase comparability of algorithms and their use in national and international studies.</p>\",\"PeriodicalId\":36483,\"journal\":{\"name\":\"International Journal of Population Data Science\",\"volume\":\"10 2\",\"pages\":\"2466\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931606/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Population Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23889/ijpds.v10i2.2466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Population Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23889/ijpds.v10i2.2466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum elements for reporting a multi-jurisdiction feasibility assessment of algorithms based on routinely collected health data: Health Data Research Network Canada recommendations.

Background: Research and surveillance using routinely collected health data rely on algorithms or definitions to ascertain disease cases or health measures. Whenever algorithm validation studies are not possible due to the unavailability of a reference standard, algorithm feasibility studies can be used to create and assess algorithms for use in more than one population or jurisdiction. Publication of the methods used to conduct feasibility studies is critical for reproducibility and transparency. Existing guidelines applicable to feasibility studies include the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) and REporting of studies Conducted using Observational Routinely collected health Data (RECORD) guidelines. These guidelines may benefit from additional elements that capture aspects particular to multi-jurisdiction algorithm feasibility studies and ensure their reproducibility. The aim of this paper is to identify the minimum elements for reporting feasibility studies to ensure reproducibility and transparency.

Methods: A subcommittee of four individuals with expertise in routinely collected health data, multi-jurisdiction health research, and algorithm development and implementation was formed from Health Data Research Network (HDRN) Canada's Algorithms and Harmonized Data Working Group (AHD-WG). The subcommittee reviewed items within the STROBE and RECORD guidelines and evaluated these items against published feasibility studies. Items to ensure transparent reporting of feasibility studies not contained within STROBE or RECORD guidelines were identified through consensus by subcommittee members using the Nominal Group Technique. The AHD-WG reviewed and approved these additional recommended elements.

Results: Eleven new recommended elements were identified: one element for the title and abstract, one for the introduction, five for the methods, and four for the results sections. Recommended elements primarily addressed reporting jurisdictional data variabilities, data harmonization methods, and algorithm implementation techniques.

Significance: Implementation of these recommended elements, alongside the RECORD guidelines, is intended to encourage consistent publication of methods that support reproducibility, as well as increase comparability of algorithms and their use in national and international studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
386
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信