Zhiyun Guo, Xia Qin, Maokui Yue, Lingling Wu, Ning Li, Jing Su, Meijie Jiang
{"title":"携带 blaKPC-2 的 IS26 介导了从临床场所分离的广泛耐药肺炎克雷伯菌对碳青霉烯类耐药性的异质性。","authors":"Zhiyun Guo, Xia Qin, Maokui Yue, Lingling Wu, Ning Li, Jing Su, Meijie Jiang","doi":"10.1186/s13100-025-00351-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Due to the widespread and irrational use of antibiotics, the emergence and prevalence of carbapenem-resistant Klebsiella pneumoniae (K. pneumoniae) have become a major challenge in controlling bacterial infections in hospitals. The bla<sub>KPC-2</sub> gene located on mobile genetic elements has further complicated the control of resistant bacteria transmission.</p><p><strong>Results: </strong>In this study, K. pneumoniae strains were isolated from blood cultures of patients. Using the Kirby-Bauer disk diffusion method, we found carbapenem resistance heterogeneity. The resistant subpopulation KPTA-R1 and the sensitive subpopulation KPTA-S1 were purified. Whole-genome sequencing revealed that the bla<sub>KPC-2</sub> gene in KPTA-R1 was located on an IncFII plasmid (pKPC-R), within a composite transposon (PCTs) formed by two direct repeats of IS26 elements. The structure was identified as IS26-RecA-ISKpn27-bla<sub>KPC-2</sub>-ISKpn6-IS26. However, in KPTA-S1, a similar plasmid, pAR-S, lacked this segment. Sequence comparison analysis indicates that the deletion of this bla<sub>KPC-2</sub> encoding sequence in this IncFII plasmid is associated with transposition activity mediated by IS26. Multi-sequence comparison of the plasmids showed that the IS26 transposon facilitated the sequence polymorphism of these plasmids.</p><p><strong>Conclusion: </strong>This study reveals the key role of IS26-mediated transposition activity, through homologous recombination, in the emergence of carbapenem resistance heterogeneity in clinical K. pneumoniae strains carrying bla<sub>KPC-2</sub>. IS26 is able to promote the evolution of resistance in the IncFII plasmid, and through copy-in cointegration or targeted conservative cointegration may result in the acquisition or loss of antibiotic resistance, which may affect clinical care and pose a public health risk.</p>","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":"16 1","pages":"13"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931797/pdf/","citationCount":"0","resultStr":"{\"title\":\"IS26 carrying bla<sub>KPC-2</sub> mediates carbapenem resistance heterogeneity in extensively drug-resistant Klebsiella pneumoniae isolated from clinical sites.\",\"authors\":\"Zhiyun Guo, Xia Qin, Maokui Yue, Lingling Wu, Ning Li, Jing Su, Meijie Jiang\",\"doi\":\"10.1186/s13100-025-00351-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Due to the widespread and irrational use of antibiotics, the emergence and prevalence of carbapenem-resistant Klebsiella pneumoniae (K. pneumoniae) have become a major challenge in controlling bacterial infections in hospitals. The bla<sub>KPC-2</sub> gene located on mobile genetic elements has further complicated the control of resistant bacteria transmission.</p><p><strong>Results: </strong>In this study, K. pneumoniae strains were isolated from blood cultures of patients. Using the Kirby-Bauer disk diffusion method, we found carbapenem resistance heterogeneity. The resistant subpopulation KPTA-R1 and the sensitive subpopulation KPTA-S1 were purified. Whole-genome sequencing revealed that the bla<sub>KPC-2</sub> gene in KPTA-R1 was located on an IncFII plasmid (pKPC-R), within a composite transposon (PCTs) formed by two direct repeats of IS26 elements. The structure was identified as IS26-RecA-ISKpn27-bla<sub>KPC-2</sub>-ISKpn6-IS26. However, in KPTA-S1, a similar plasmid, pAR-S, lacked this segment. Sequence comparison analysis indicates that the deletion of this bla<sub>KPC-2</sub> encoding sequence in this IncFII plasmid is associated with transposition activity mediated by IS26. Multi-sequence comparison of the plasmids showed that the IS26 transposon facilitated the sequence polymorphism of these plasmids.</p><p><strong>Conclusion: </strong>This study reveals the key role of IS26-mediated transposition activity, through homologous recombination, in the emergence of carbapenem resistance heterogeneity in clinical K. pneumoniae strains carrying bla<sub>KPC-2</sub>. IS26 is able to promote the evolution of resistance in the IncFII plasmid, and through copy-in cointegration or targeted conservative cointegration may result in the acquisition or loss of antibiotic resistance, which may affect clinical care and pose a public health risk.</p>\",\"PeriodicalId\":18854,\"journal\":{\"name\":\"Mobile DNA\",\"volume\":\"16 1\",\"pages\":\"13\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931797/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mobile DNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13100-025-00351-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-025-00351-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
IS26 carrying blaKPC-2 mediates carbapenem resistance heterogeneity in extensively drug-resistant Klebsiella pneumoniae isolated from clinical sites.
Background: Due to the widespread and irrational use of antibiotics, the emergence and prevalence of carbapenem-resistant Klebsiella pneumoniae (K. pneumoniae) have become a major challenge in controlling bacterial infections in hospitals. The blaKPC-2 gene located on mobile genetic elements has further complicated the control of resistant bacteria transmission.
Results: In this study, K. pneumoniae strains were isolated from blood cultures of patients. Using the Kirby-Bauer disk diffusion method, we found carbapenem resistance heterogeneity. The resistant subpopulation KPTA-R1 and the sensitive subpopulation KPTA-S1 were purified. Whole-genome sequencing revealed that the blaKPC-2 gene in KPTA-R1 was located on an IncFII plasmid (pKPC-R), within a composite transposon (PCTs) formed by two direct repeats of IS26 elements. The structure was identified as IS26-RecA-ISKpn27-blaKPC-2-ISKpn6-IS26. However, in KPTA-S1, a similar plasmid, pAR-S, lacked this segment. Sequence comparison analysis indicates that the deletion of this blaKPC-2 encoding sequence in this IncFII plasmid is associated with transposition activity mediated by IS26. Multi-sequence comparison of the plasmids showed that the IS26 transposon facilitated the sequence polymorphism of these plasmids.
Conclusion: This study reveals the key role of IS26-mediated transposition activity, through homologous recombination, in the emergence of carbapenem resistance heterogeneity in clinical K. pneumoniae strains carrying blaKPC-2. IS26 is able to promote the evolution of resistance in the IncFII plasmid, and through copy-in cointegration or targeted conservative cointegration may result in the acquisition or loss of antibiotic resistance, which may affect clinical care and pose a public health risk.
期刊介绍:
Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.