电力征收动议。一、扩散。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-03-01 DOI:10.1063/5.0251337
Iddo Eliazar
{"title":"电力征收动议。一、扩散。","authors":"Iddo Eliazar","doi":"10.1063/5.0251337","DOIUrl":null,"url":null,"abstract":"<p><p>Recently introduced and explored, power Brownian motion (PBM) is a versatile generalization of Brownian motion: it is Markovian on the one hand and it displays a variety of anomalous-diffusion behaviors on the other hand. Brownian motion is the universal scaling-limit of finite-variance random walks. Shifting from the finite-variance realm to the infinite-variance realm, the counterpart of Brownian motion is Levy motion: the stable and symmetric Levy process. This pair of papers introduces and explores power Levy motion (PLM), which is to Levy motion what PBM is to Brownian motion. This first part of the pair constructs PLM and explains its emergence and rationale. Taking on a \"diffusion perspective,\" this part addresses the following facets and features of PLM: increments and their Fourier structure, selfsimilarity and Hurst exponent, sub-diffusion and super-diffusion, aging and anti-aging, and Holder exponent. Taking on an \"evolution perspective,\" the second part will continue the investigation of PLM.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Levy motion. I. Diffusion.\",\"authors\":\"Iddo Eliazar\",\"doi\":\"10.1063/5.0251337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently introduced and explored, power Brownian motion (PBM) is a versatile generalization of Brownian motion: it is Markovian on the one hand and it displays a variety of anomalous-diffusion behaviors on the other hand. Brownian motion is the universal scaling-limit of finite-variance random walks. Shifting from the finite-variance realm to the infinite-variance realm, the counterpart of Brownian motion is Levy motion: the stable and symmetric Levy process. This pair of papers introduces and explores power Levy motion (PLM), which is to Levy motion what PBM is to Brownian motion. This first part of the pair constructs PLM and explains its emergence and rationale. Taking on a \\\"diffusion perspective,\\\" this part addresses the following facets and features of PLM: increments and their Fourier structure, selfsimilarity and Hurst exponent, sub-diffusion and super-diffusion, aging and anti-aging, and Holder exponent. Taking on an \\\"evolution perspective,\\\" the second part will continue the investigation of PLM.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0251337\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0251337","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

幂布朗运动(PBM)是布朗运动的一种通用推广,它一方面是马尔可夫运动,另一方面又表现出各种反常扩散行为。布朗运动是有限方差随机游走的普遍标度极限。从有限方差领域到无限方差领域,布朗运动的对应物是Levy运动:稳定和对称的Levy过程。这两篇论文介绍并探讨了动力列维运动(PLM),它之于列维运动就如同PBM之于布朗运动。这对组合的第一部分构建了PLM,并解释了它的出现和基本原理。从“扩散视角”出发,本部分将讨论PLM的以下方面和特征:增量及其傅立叶结构、自相似性和Hurst指数、亚扩散和超扩散、老化和抗老化以及Holder指数。从“进化的角度”出发,第二部分将继续研究PLM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Levy motion. I. Diffusion.

Recently introduced and explored, power Brownian motion (PBM) is a versatile generalization of Brownian motion: it is Markovian on the one hand and it displays a variety of anomalous-diffusion behaviors on the other hand. Brownian motion is the universal scaling-limit of finite-variance random walks. Shifting from the finite-variance realm to the infinite-variance realm, the counterpart of Brownian motion is Levy motion: the stable and symmetric Levy process. This pair of papers introduces and explores power Levy motion (PLM), which is to Levy motion what PBM is to Brownian motion. This first part of the pair constructs PLM and explains its emergence and rationale. Taking on a "diffusion perspective," this part addresses the following facets and features of PLM: increments and their Fourier structure, selfsimilarity and Hurst exponent, sub-diffusion and super-diffusion, aging and anti-aging, and Holder exponent. Taking on an "evolution perspective," the second part will continue the investigation of PLM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信