用可解释的人工智能分析电网频率动态的确定性和随机影响。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-03-01 DOI:10.1063/5.0239371
Tim Drewnick, Xinyi Wen, Ulrich Oberhofer, Leonardo Rydin Gorjão, Christian Beck, Veit Hagenmeyer, Benjamin Schäfer
{"title":"用可解释的人工智能分析电网频率动态的确定性和随机影响。","authors":"Tim Drewnick, Xinyi Wen, Ulrich Oberhofer, Leonardo Rydin Gorjão, Christian Beck, Veit Hagenmeyer, Benjamin Schäfer","doi":"10.1063/5.0239371","DOIUrl":null,"url":null,"abstract":"<p><p>Power grids are essential for our society, connecting consumers and generators. Their frequency stability is impacted by supply and demand changes, including deterministic and stochastic dynamics, e.g., from market activities or fluctuating renewables. The first two Kramers-Moyal coefficients allow for a description of both the deterministic (via drift) and stochastic (via diffusion) aspects of these dynamics. Such a description and understanding could be critical to stabilizing power systems. However, how drift and diffusion differ between synchronous areas, how they vary over time, and how the generation mix influences them, remains unclear. Analyzing temporal patterns in drift and diffusion for frequency data from Australia (AUS) and Continental Europe (CE), we reveal a positive correlation between drift and diffusion. In addition, we utilize both gradient-boosted trees and neural network models to train drift and diffusion models for AUS and CE. Shapley additive explanations make these black-box models transparent and allow us to identify the total generation and load to influence the drift, while calendar features seem critical for the diffusion coefficient estimates.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing deterministic and stochastic influences on the power grid frequency dynamics with explainable artificial intelligence.\",\"authors\":\"Tim Drewnick, Xinyi Wen, Ulrich Oberhofer, Leonardo Rydin Gorjão, Christian Beck, Veit Hagenmeyer, Benjamin Schäfer\",\"doi\":\"10.1063/5.0239371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Power grids are essential for our society, connecting consumers and generators. Their frequency stability is impacted by supply and demand changes, including deterministic and stochastic dynamics, e.g., from market activities or fluctuating renewables. The first two Kramers-Moyal coefficients allow for a description of both the deterministic (via drift) and stochastic (via diffusion) aspects of these dynamics. Such a description and understanding could be critical to stabilizing power systems. However, how drift and diffusion differ between synchronous areas, how they vary over time, and how the generation mix influences them, remains unclear. Analyzing temporal patterns in drift and diffusion for frequency data from Australia (AUS) and Continental Europe (CE), we reveal a positive correlation between drift and diffusion. In addition, we utilize both gradient-boosted trees and neural network models to train drift and diffusion models for AUS and CE. Shapley additive explanations make these black-box models transparent and allow us to identify the total generation and load to influence the drift, while calendar features seem critical for the diffusion coefficient estimates.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0239371\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0239371","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

电网对我们的社会至关重要,它连接着消费者和发电机。其频率稳定性受到供需变化的影响,包括确定性和随机动态,例如来自市场活动或波动的可再生能源。前两个Kramers-Moyal系数允许描述这些动力学的确定性(通过漂移)和随机(通过扩散)方面。这样的描述和理解对于稳定电力系统至关重要。然而,漂移和扩散在同步区域之间如何不同,它们如何随时间变化,以及发电组合如何影响它们,仍不清楚。分析来自澳大利亚和欧洲大陆的频率数据的漂移和扩散的时间模式,我们揭示了漂移和扩散之间的正相关关系。此外,我们利用梯度增强树和神经网络模型来训练AUS和CE的漂移和扩散模型。Shapley加性解释使这些黑盒模型变得透明,并允许我们识别影响漂移的总发电量和负荷,而日历特征似乎对扩散系数估计至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing deterministic and stochastic influences on the power grid frequency dynamics with explainable artificial intelligence.

Power grids are essential for our society, connecting consumers and generators. Their frequency stability is impacted by supply and demand changes, including deterministic and stochastic dynamics, e.g., from market activities or fluctuating renewables. The first two Kramers-Moyal coefficients allow for a description of both the deterministic (via drift) and stochastic (via diffusion) aspects of these dynamics. Such a description and understanding could be critical to stabilizing power systems. However, how drift and diffusion differ between synchronous areas, how they vary over time, and how the generation mix influences them, remains unclear. Analyzing temporal patterns in drift and diffusion for frequency data from Australia (AUS) and Continental Europe (CE), we reveal a positive correlation between drift and diffusion. In addition, we utilize both gradient-boosted trees and neural network models to train drift and diffusion models for AUS and CE. Shapley additive explanations make these black-box models transparent and allow us to identify the total generation and load to influence the drift, while calendar features seem critical for the diffusion coefficient estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信