SC-VAR:使用单细胞表观基因组数据解释多基因疾病风险的计算工具。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Gefei Zhao, Binbin Lai
{"title":"SC-VAR:使用单细胞表观基因组数据解释多基因疾病风险的计算工具。","authors":"Gefei Zhao, Binbin Lai","doi":"10.1093/bib/bbaf123","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>One major challenge of interpreting variants from genome-wide association studies (GWAS) of complex traits or diseases is how to efficiently annotate noncoding variants. These variants influence gene expression by disrupting cis-regulatory elements (CREs), whose spatial and cell-type specificity are not adequately captured by conventional tools like multi-marker analysis of genomic annotation. Current methods either rely on linear proximity to genes or quantitative trait locus (QTL) data yet fail to integrate single-cell epigenomic information for a comprehensive annotation.</p><p><strong>Results: </strong>We present SC-VAR, a novel computational tool designed to enhance the interpretation of disease-associated risks from GWAS using single-cell epigenomic data. SC-VAR leverages single-cell epigenomic data to predict functional outcomes including risk genes, pathways, and cell types for both coding and noncoding disease-associated variants. We demonstrate that SC-VAR outperforms state-of-the-art methods by predicting more validated disease-related genes and pathways for multiple diseases. Additionally, SC-VAR identifies cell types that are susceptible to disease, along with their specific CREs and target genes linked to risk. By capturing a broad range of disease risks across human tissues at distinct developmental stages, SC-VAR could enhance our understanding of disease mechanisms in complex tissues across different life stages.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932087/pdf/","citationCount":"0","resultStr":"{\"title\":\"SC-VAR: a computational tool for interpreting polygenic disease risks using single-cell epigenomic data.\",\"authors\":\"Gefei Zhao, Binbin Lai\",\"doi\":\"10.1093/bib/bbaf123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>One major challenge of interpreting variants from genome-wide association studies (GWAS) of complex traits or diseases is how to efficiently annotate noncoding variants. These variants influence gene expression by disrupting cis-regulatory elements (CREs), whose spatial and cell-type specificity are not adequately captured by conventional tools like multi-marker analysis of genomic annotation. Current methods either rely on linear proximity to genes or quantitative trait locus (QTL) data yet fail to integrate single-cell epigenomic information for a comprehensive annotation.</p><p><strong>Results: </strong>We present SC-VAR, a novel computational tool designed to enhance the interpretation of disease-associated risks from GWAS using single-cell epigenomic data. SC-VAR leverages single-cell epigenomic data to predict functional outcomes including risk genes, pathways, and cell types for both coding and noncoding disease-associated variants. We demonstrate that SC-VAR outperforms state-of-the-art methods by predicting more validated disease-related genes and pathways for multiple diseases. Additionally, SC-VAR identifies cell types that are susceptible to disease, along with their specific CREs and target genes linked to risk. By capturing a broad range of disease risks across human tissues at distinct developmental stages, SC-VAR could enhance our understanding of disease mechanisms in complex tissues across different life stages.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932087/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf123\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf123","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

动机:从复杂性状或疾病的全基因组关联研究(GWAS)中解释变异的一个主要挑战是如何有效地注释非编码变异。这些变异通过破坏顺式调控元件(cre)来影响基因表达,这些元件的空间和细胞类型特异性不能被基因组注释的多标记分析等传统工具充分捕获。目前的方法要么依赖于基因的线性接近性,要么依赖于数量性状位点(QTL)数据,但未能整合单细胞表观基因组信息进行全面的注释。结果:我们提出了SC-VAR,一种新的计算工具,旨在利用单细胞表观基因组数据增强对GWAS疾病相关风险的解释。SC-VAR利用单细胞表观基因组数据来预测功能结果,包括编码和非编码疾病相关变异的风险基因、途径和细胞类型。我们证明,SC-VAR通过预测更有效的疾病相关基因和多种疾病的途径,优于最先进的方法。此外,SC-VAR还能识别易受疾病影响的细胞类型,以及它们的特定cre和与风险相关的靶基因。通过捕获不同发育阶段人类组织的广泛疾病风险,SC-VAR可以增强我们对不同生命阶段复杂组织疾病机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SC-VAR: a computational tool for interpreting polygenic disease risks using single-cell epigenomic data.

Motivation: One major challenge of interpreting variants from genome-wide association studies (GWAS) of complex traits or diseases is how to efficiently annotate noncoding variants. These variants influence gene expression by disrupting cis-regulatory elements (CREs), whose spatial and cell-type specificity are not adequately captured by conventional tools like multi-marker analysis of genomic annotation. Current methods either rely on linear proximity to genes or quantitative trait locus (QTL) data yet fail to integrate single-cell epigenomic information for a comprehensive annotation.

Results: We present SC-VAR, a novel computational tool designed to enhance the interpretation of disease-associated risks from GWAS using single-cell epigenomic data. SC-VAR leverages single-cell epigenomic data to predict functional outcomes including risk genes, pathways, and cell types for both coding and noncoding disease-associated variants. We demonstrate that SC-VAR outperforms state-of-the-art methods by predicting more validated disease-related genes and pathways for multiple diseases. Additionally, SC-VAR identifies cell types that are susceptible to disease, along with their specific CREs and target genes linked to risk. By capturing a broad range of disease risks across human tissues at distinct developmental stages, SC-VAR could enhance our understanding of disease mechanisms in complex tissues across different life stages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信