Maria M. Haykal , Sylvie Rodrigues-Ferreira , Rania El Botty , Laura Sourd , Elisabetta Marangoni , Marie Varin , Alexis Denis , Clara Nahmias
{"title":"靶向WEE1激酶作为atip3缺陷乳腺癌的治疗策略","authors":"Maria M. Haykal , Sylvie Rodrigues-Ferreira , Rania El Botty , Laura Sourd , Elisabetta Marangoni , Marie Varin , Alexis Denis , Clara Nahmias","doi":"10.1016/j.canlet.2025.217665","DOIUrl":null,"url":null,"abstract":"<div><div>ATIP3-deficient breast cancers represent a subset of aggressive tumors with limited therapeutic options and poor prognosis. Here, we screened a panel of cell cycle kinase inhibitors to identify novel targets for these tumors. We show that loss of ATIP3 sensitizes breast cancer cells to WEE1 inhibition, resulting in aberrant mitoses characterized by detachment of centromere proteins from DNA and chromosome pulverization. This phenotype arises from excessive replication stress and DNA damage in S-phase, combined with premature mitotic entry driven by untimely CDK1 activation. Mechanistically, we identify DNA2 helicase/nuclease as a key mediator of chromosome pulverization. Importantly, the heightened sensitivity of ATIP3-deficient cells to WEE1 inhibition provides a strong rationale for clinical exploration of WEE1-targeted therapies. Furthermore, combining WEE1 and PKMYT1 inhibitors enhances therapeutic efficacy, offering a promising strategy for personalized treatment in ATIP3-deficient breast cancers.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"620 ","pages":"Article 217665"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting WEE1 kinase as a therapeutic strategy in ATIP3-deficient breast cancers\",\"authors\":\"Maria M. Haykal , Sylvie Rodrigues-Ferreira , Rania El Botty , Laura Sourd , Elisabetta Marangoni , Marie Varin , Alexis Denis , Clara Nahmias\",\"doi\":\"10.1016/j.canlet.2025.217665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>ATIP3-deficient breast cancers represent a subset of aggressive tumors with limited therapeutic options and poor prognosis. Here, we screened a panel of cell cycle kinase inhibitors to identify novel targets for these tumors. We show that loss of ATIP3 sensitizes breast cancer cells to WEE1 inhibition, resulting in aberrant mitoses characterized by detachment of centromere proteins from DNA and chromosome pulverization. This phenotype arises from excessive replication stress and DNA damage in S-phase, combined with premature mitotic entry driven by untimely CDK1 activation. Mechanistically, we identify DNA2 helicase/nuclease as a key mediator of chromosome pulverization. Importantly, the heightened sensitivity of ATIP3-deficient cells to WEE1 inhibition provides a strong rationale for clinical exploration of WEE1-targeted therapies. Furthermore, combining WEE1 and PKMYT1 inhibitors enhances therapeutic efficacy, offering a promising strategy for personalized treatment in ATIP3-deficient breast cancers.</div></div>\",\"PeriodicalId\":9506,\"journal\":{\"name\":\"Cancer letters\",\"volume\":\"620 \",\"pages\":\"Article 217665\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304383525002319\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525002319","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Targeting WEE1 kinase as a therapeutic strategy in ATIP3-deficient breast cancers
ATIP3-deficient breast cancers represent a subset of aggressive tumors with limited therapeutic options and poor prognosis. Here, we screened a panel of cell cycle kinase inhibitors to identify novel targets for these tumors. We show that loss of ATIP3 sensitizes breast cancer cells to WEE1 inhibition, resulting in aberrant mitoses characterized by detachment of centromere proteins from DNA and chromosome pulverization. This phenotype arises from excessive replication stress and DNA damage in S-phase, combined with premature mitotic entry driven by untimely CDK1 activation. Mechanistically, we identify DNA2 helicase/nuclease as a key mediator of chromosome pulverization. Importantly, the heightened sensitivity of ATIP3-deficient cells to WEE1 inhibition provides a strong rationale for clinical exploration of WEE1-targeted therapies. Furthermore, combining WEE1 and PKMYT1 inhibitors enhances therapeutic efficacy, offering a promising strategy for personalized treatment in ATIP3-deficient breast cancers.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.