利用斑马鱼模型鉴定马凡氏综合征家族中一种新型FBN1变异并进行功能验证。

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shitong Huang, Jiansong Chen, Qiuyu Wang, Ruyue Zhang, Jian Zhuang, Ruiyuan Huang, Changjiang Yu, Miaoxian Fang, Haishan Zhao, Liming Lei
{"title":"利用斑马鱼模型鉴定马凡氏综合征家族中一种新型FBN1变异并进行功能验证。","authors":"Shitong Huang, Jiansong Chen, Qiuyu Wang, Ruyue Zhang, Jian Zhuang, Ruiyuan Huang, Changjiang Yu, Miaoxian Fang, Haishan Zhao, Liming Lei","doi":"10.1186/s12864-025-11471-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Marfan syndrome (MFS) is an inherited autosomal dominant disorder that affects connective tissue with an incidence of about 1 in 5,000 to 10,000 people. 90% of MFS is caused by mutations in the fibrillin-1 (FBN1) gene. We recruited a family with MFS phenotype in South China and identified a novel variant. This study investigated whether this genetic variant is pathogenic and the potential pathway related to lipid metabolism in MFS.</p><p><strong>Methods: </strong>A three-generation consanguineous family was recruited for this study. Whole exome sequencing (WES) was utilized on family members. The 3D structure of the protein was predicted using AlphaFold. CRISPR/Cas9 was applied to generate a similar fbn1 nonsense mutation (fbn1<sup>+/-</sup>) in zebrafish. RNA-seq analysis on zebrafish was performed to identify potential pathways related to MFS pathogenesis.</p><p><strong>Results: </strong>Our study identified a novel variant [NM_000138.5; c.7764 C > G: p.(Y2588*)] in FBN1 gene from the family and identified the same site mutation among the proband along with her son and daughter. Structural modeling showed the p.Y2588* mutation resulted from a truncated protein. Compared to wild-type zebrafish, the F2 generation fbn1<sup>+/-</sup> zebrafish exhibited MFS phenotype. RNA-seq analysis indicated that many genes related to leptin are up-regulating, which could affect bone development and adipose homeostasis.</p><p><strong>Conclusion: </strong>A novel variant was identified in FBN1 gene. In a zebrafish model, we found functional evidence supporting the pathogenicity of the detected nonsense mutation. Our research proposes a possible mechanism underlying the relationship between lipid metabolism and MFS. These findings can help improve the clinical diagnosis and treatment of MFS.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"288"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931800/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification and functional validation of a novel FBN1 variant in a Marfan syndrome family using a zebrafish model.\",\"authors\":\"Shitong Huang, Jiansong Chen, Qiuyu Wang, Ruyue Zhang, Jian Zhuang, Ruiyuan Huang, Changjiang Yu, Miaoxian Fang, Haishan Zhao, Liming Lei\",\"doi\":\"10.1186/s12864-025-11471-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Marfan syndrome (MFS) is an inherited autosomal dominant disorder that affects connective tissue with an incidence of about 1 in 5,000 to 10,000 people. 90% of MFS is caused by mutations in the fibrillin-1 (FBN1) gene. We recruited a family with MFS phenotype in South China and identified a novel variant. This study investigated whether this genetic variant is pathogenic and the potential pathway related to lipid metabolism in MFS.</p><p><strong>Methods: </strong>A three-generation consanguineous family was recruited for this study. Whole exome sequencing (WES) was utilized on family members. The 3D structure of the protein was predicted using AlphaFold. CRISPR/Cas9 was applied to generate a similar fbn1 nonsense mutation (fbn1<sup>+/-</sup>) in zebrafish. RNA-seq analysis on zebrafish was performed to identify potential pathways related to MFS pathogenesis.</p><p><strong>Results: </strong>Our study identified a novel variant [NM_000138.5; c.7764 C > G: p.(Y2588*)] in FBN1 gene from the family and identified the same site mutation among the proband along with her son and daughter. Structural modeling showed the p.Y2588* mutation resulted from a truncated protein. Compared to wild-type zebrafish, the F2 generation fbn1<sup>+/-</sup> zebrafish exhibited MFS phenotype. RNA-seq analysis indicated that many genes related to leptin are up-regulating, which could affect bone development and adipose homeostasis.</p><p><strong>Conclusion: </strong>A novel variant was identified in FBN1 gene. In a zebrafish model, we found functional evidence supporting the pathogenicity of the detected nonsense mutation. Our research proposes a possible mechanism underlying the relationship between lipid metabolism and MFS. These findings can help improve the clinical diagnosis and treatment of MFS.</p>\",\"PeriodicalId\":9030,\"journal\":{\"name\":\"BMC Genomics\",\"volume\":\"26 1\",\"pages\":\"288\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931800/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12864-025-11471-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11471-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:马凡氏综合征(MFS)是一种遗传性常染色体显性遗传病,影响结缔组织,发病率约为5,000至10,000人中有1人。90%的MFS是由纤维蛋白1 (FBN1)基因突变引起的。我们在中国南方招募了一个具有MFS表型的家庭,并鉴定了一个新的变异。本研究探讨了该基因变异是否具有致病性,以及与MFS脂质代谢相关的潜在途径。方法:选取一个三代同堂家庭为研究对象。对家族成员进行全外显子组测序(WES)。使用AlphaFold预测了蛋白质的三维结构。应用CRISPR/Cas9在斑马鱼中产生类似的fbn1无义突变(fbn1+/-)。对斑马鱼进行RNA-seq分析,以确定与MFS发病机制相关的潜在途径。结果:我们的研究鉴定了一种新的变异[NM_000138.5;c.7764C > G: p.(Y2588*)]在该家族的FBN1基因中发现了相同位点的突变,并在先证者及其儿子和女儿中发现了相同位点的突变。结构模型显示p.Y2588*突变是由一个截断的蛋白引起的。与野生型斑马鱼相比,F2代fbn1+/-斑马鱼表现出MFS表型。RNA-seq分析表明,许多与瘦素相关的基因上调,可能影响骨骼发育和脂肪稳态。结论:在FBN1基因中发现了一个新的变异。在斑马鱼模型中,我们发现了支持检测到的无义突变致病性的功能证据。我们的研究提出了脂质代谢与MFS之间关系的可能机制。这些发现有助于提高MFS的临床诊断和治疗水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and functional validation of a novel FBN1 variant in a Marfan syndrome family using a zebrafish model.

Background: Marfan syndrome (MFS) is an inherited autosomal dominant disorder that affects connective tissue with an incidence of about 1 in 5,000 to 10,000 people. 90% of MFS is caused by mutations in the fibrillin-1 (FBN1) gene. We recruited a family with MFS phenotype in South China and identified a novel variant. This study investigated whether this genetic variant is pathogenic and the potential pathway related to lipid metabolism in MFS.

Methods: A three-generation consanguineous family was recruited for this study. Whole exome sequencing (WES) was utilized on family members. The 3D structure of the protein was predicted using AlphaFold. CRISPR/Cas9 was applied to generate a similar fbn1 nonsense mutation (fbn1+/-) in zebrafish. RNA-seq analysis on zebrafish was performed to identify potential pathways related to MFS pathogenesis.

Results: Our study identified a novel variant [NM_000138.5; c.7764 C > G: p.(Y2588*)] in FBN1 gene from the family and identified the same site mutation among the proband along with her son and daughter. Structural modeling showed the p.Y2588* mutation resulted from a truncated protein. Compared to wild-type zebrafish, the F2 generation fbn1+/- zebrafish exhibited MFS phenotype. RNA-seq analysis indicated that many genes related to leptin are up-regulating, which could affect bone development and adipose homeostasis.

Conclusion: A novel variant was identified in FBN1 gene. In a zebrafish model, we found functional evidence supporting the pathogenicity of the detected nonsense mutation. Our research proposes a possible mechanism underlying the relationship between lipid metabolism and MFS. These findings can help improve the clinical diagnosis and treatment of MFS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信