肽聚糖生物合成抑制剂磷霉素的分子药理学研究。

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biochemistry Biochemistry Pub Date : 2025-04-15 Epub Date: 2025-03-24 DOI:10.1021/acs.biochem.4c00522
Dennis H Kim, Watson J Lees
{"title":"肽聚糖生物合成抑制剂磷霉素的分子药理学研究。","authors":"Dennis H Kim, Watson J Lees","doi":"10.1021/acs.biochem.4c00522","DOIUrl":null,"url":null,"abstract":"<p><p>The antibiotic fosfomycin is an epoxy-phosphonate natural product with a broad spectrum of antibacterial activity and distinct mechanism of action that has been in clinical use for 50 years. Fosfomycin is an irreversible covalent inhibitor of UDP-GlcNAc enolpyruvyl transferase (MurA), which catalyzes the first committed step in bacterial peptidoglycan biosynthesis. Fosfomycin binds to the active site of MurA in competition with substrate phosphoenolpyruvate (PEP) and undergoes the ring-opening nucleophilic attack of an active-site cysteine. MurA and its related enolpyruvyl transferase, 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase (AroA), are the only known enzymes to catalyze the unusual enolpyruvyl transfer from PEP, and each is the target of an important inhibitor. Specifically, MurA is inactivated by fosfomycin, and EPSP synthase (AroA) of the shikimate pathway is the target of the herbicide glyphosate. Commonalities and differences in enzymatic reaction mechanisms of MurA and EPSP synthase provide a molecular rationale for the specificity of their respective inhibitors. With its distinct mode of molecular action and clinical activity against multidrug-resistant bacteria, fosfomycin continues to motivate the discovery and development of novel inhibitors of MurA.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"1720-1727"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Pharmacology of the Antibiotic Fosfomycin, an Inhibitor of Peptidoglycan Biosynthesis.\",\"authors\":\"Dennis H Kim, Watson J Lees\",\"doi\":\"10.1021/acs.biochem.4c00522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The antibiotic fosfomycin is an epoxy-phosphonate natural product with a broad spectrum of antibacterial activity and distinct mechanism of action that has been in clinical use for 50 years. Fosfomycin is an irreversible covalent inhibitor of UDP-GlcNAc enolpyruvyl transferase (MurA), which catalyzes the first committed step in bacterial peptidoglycan biosynthesis. Fosfomycin binds to the active site of MurA in competition with substrate phosphoenolpyruvate (PEP) and undergoes the ring-opening nucleophilic attack of an active-site cysteine. MurA and its related enolpyruvyl transferase, 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase (AroA), are the only known enzymes to catalyze the unusual enolpyruvyl transfer from PEP, and each is the target of an important inhibitor. Specifically, MurA is inactivated by fosfomycin, and EPSP synthase (AroA) of the shikimate pathway is the target of the herbicide glyphosate. Commonalities and differences in enzymatic reaction mechanisms of MurA and EPSP synthase provide a molecular rationale for the specificity of their respective inhibitors. With its distinct mode of molecular action and clinical activity against multidrug-resistant bacteria, fosfomycin continues to motivate the discovery and development of novel inhibitors of MurA.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":\" \",\"pages\":\"1720-1727\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.4c00522\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00522","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

磷霉素是一种环氧膦酸盐天然产物,具有广谱抗菌活性和独特的作用机制,已在临床应用了50年。磷霉素是一种不可逆的共价UDP-GlcNAc烯醇丙酮基转移酶(MurA)抑制剂,它催化了细菌肽聚糖生物合成的第一步。磷霉素与底物磷酸烯醇丙酮酸(PEP)竞争,结合到MurA的活性位点,并受到活性位点半胱氨酸的开环亲核攻击。MurA及其相关的烯醇丙酮酰转移酶5-烯醇丙酮酰-shikimate-3-phosphate (EPSP)合成酶(AroA)是已知的唯一能催化PEP中烯醇丙酮酰转移的酶,它们都是一种重要抑制剂的靶标。具体来说,MurA被磷霉素灭活,莽草酸途径的EPSP合成酶(AroA)是除草剂草甘膦的靶标。MurA和EPSP合成酶酶促反应机制的共性和差异为它们各自抑制剂的特异性提供了分子基础。磷霉素以其独特的分子作用模式和抗多药耐药细菌的临床活性,不断推动新的MurA抑制剂的发现和开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Pharmacology of the Antibiotic Fosfomycin, an Inhibitor of Peptidoglycan Biosynthesis.

The antibiotic fosfomycin is an epoxy-phosphonate natural product with a broad spectrum of antibacterial activity and distinct mechanism of action that has been in clinical use for 50 years. Fosfomycin is an irreversible covalent inhibitor of UDP-GlcNAc enolpyruvyl transferase (MurA), which catalyzes the first committed step in bacterial peptidoglycan biosynthesis. Fosfomycin binds to the active site of MurA in competition with substrate phosphoenolpyruvate (PEP) and undergoes the ring-opening nucleophilic attack of an active-site cysteine. MurA and its related enolpyruvyl transferase, 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase (AroA), are the only known enzymes to catalyze the unusual enolpyruvyl transfer from PEP, and each is the target of an important inhibitor. Specifically, MurA is inactivated by fosfomycin, and EPSP synthase (AroA) of the shikimate pathway is the target of the herbicide glyphosate. Commonalities and differences in enzymatic reaction mechanisms of MurA and EPSP synthase provide a molecular rationale for the specificity of their respective inhibitors. With its distinct mode of molecular action and clinical activity against multidrug-resistant bacteria, fosfomycin continues to motivate the discovery and development of novel inhibitors of MurA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信