激光表面抛光对表面拓扑的影响和激光粉末床熔化过程中残余应力的影响激光表面抛光对激光粉末熔化过程中添加的铝-12硅部分的表面拓扑和固有应力的影响

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. K. Balla, R. K. Konki, M. Manjaiah, M. Aqeel, S. M. Shariff
{"title":"激光表面抛光对表面拓扑的影响和激光粉末床熔化过程中残余应力的影响激光表面抛光对激光粉末熔化过程中添加的铝-12硅部分的表面拓扑和固有应力的影响","authors":"S. K. Balla,&nbsp;R. K. Konki,&nbsp;M. Manjaiah,&nbsp;M. Aqeel,&nbsp;S. M. Shariff","doi":"10.1002/mawe.202400233","DOIUrl":null,"url":null,"abstract":"<p>Laser-assisted additive manufactured surfaces are more often inherently associated with surface and subsurface defects such as poor surface texture, high surface roughness, high tensile residual stress, porosity etc. Depending on the design and methodology adopted, these factors entail limitations in improving the functional properties of additively manufactured parts. Post-processing often becomes mandatory to improve surface finish, residual stresses and other surface-dependent properties. Nowadays, aluminium alloys are widely used for lightweighting in aerospace, aircraft and automotive industries with special emphasis on manufacturing complex design and multi-functional components employing additive manufacturing routes (both laser and non-laser based). The present work aims to demonstrate laser surface polishing (by remelting) of laser-assisted powder bed fusion aluminium-12silicon additively manufactured parts as a viable post-processing technique to improve surface properties. Aluminium-12 silicon cubes printed by laser powder bed fusion at optimum processing conditions having high relative density were stress-relived and subjected to laser surface polishing employing a multi-mode square-beam diode laser under varying energy densities. Results indicated a profound influence of energy density on resulting surface roughness, remelted depth, residual stress and microstructure of laser-assisted powder bed fusion additive manufactured parts. At optimum energy density, the surface roughness of the additive manufactured part was reduced by 82 % with smoothing of initial chaotic texture and reduction in residual tensile stress to zero-level. Indeed, laser surface polishing at optimum energy density enhanced surface and subsurface micro-hardness to 75 HV 0.5 – 100 HV 0.5 from 65 HV 0.5 – 75 HV 0.5 in the initial additive manufactured part on account of refined rapidly solidified structure.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"56 3","pages":"388-398"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of laser surface polishing on surface topology and residual stress in laser powder bed fusion additively manufactured aluminium-12 silicon part\\n Einfluss des Laserstrahloberflächenpolierens auf die Oberflächentopologie und die Eigenspannungen in einem durch Laserstrahl-Pulverbettschmelzen additiv gefertigten AlSi12-Bauteil\",\"authors\":\"S. K. Balla,&nbsp;R. K. Konki,&nbsp;M. Manjaiah,&nbsp;M. Aqeel,&nbsp;S. M. Shariff\",\"doi\":\"10.1002/mawe.202400233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Laser-assisted additive manufactured surfaces are more often inherently associated with surface and subsurface defects such as poor surface texture, high surface roughness, high tensile residual stress, porosity etc. Depending on the design and methodology adopted, these factors entail limitations in improving the functional properties of additively manufactured parts. Post-processing often becomes mandatory to improve surface finish, residual stresses and other surface-dependent properties. Nowadays, aluminium alloys are widely used for lightweighting in aerospace, aircraft and automotive industries with special emphasis on manufacturing complex design and multi-functional components employing additive manufacturing routes (both laser and non-laser based). The present work aims to demonstrate laser surface polishing (by remelting) of laser-assisted powder bed fusion aluminium-12silicon additively manufactured parts as a viable post-processing technique to improve surface properties. Aluminium-12 silicon cubes printed by laser powder bed fusion at optimum processing conditions having high relative density were stress-relived and subjected to laser surface polishing employing a multi-mode square-beam diode laser under varying energy densities. Results indicated a profound influence of energy density on resulting surface roughness, remelted depth, residual stress and microstructure of laser-assisted powder bed fusion additive manufactured parts. At optimum energy density, the surface roughness of the additive manufactured part was reduced by 82 % with smoothing of initial chaotic texture and reduction in residual tensile stress to zero-level. Indeed, laser surface polishing at optimum energy density enhanced surface and subsurface micro-hardness to 75 HV 0.5 – 100 HV 0.5 from 65 HV 0.5 – 75 HV 0.5 in the initial additive manufactured part on account of refined rapidly solidified structure.</p>\",\"PeriodicalId\":18366,\"journal\":{\"name\":\"Materialwissenschaft und Werkstofftechnik\",\"volume\":\"56 3\",\"pages\":\"388-398\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialwissenschaft und Werkstofftechnik\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202400233\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202400233","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

激光辅助增材制造的表面往往固有地与表面和亚表面缺陷相关,如表面纹理差、表面粗糙度高、拉伸残余应力高、孔隙率等。根据所采用的设计和方法,这些因素会限制增材制造零件的功能性能。为了改善表面光洁度、残余应力和其他与表面相关的性能,后处理通常是必须的。如今,铝合金被广泛用于航空航天、飞机和汽车工业的轻量化,特别强调使用增材制造路线(激光和非激光)制造复杂设计和多功能部件。本工作旨在证明激光辅助粉末床熔合铝硅增材制造零件的激光表面抛光(通过重熔)是一种可行的后处理技术,可以改善表面性能。在高相对密度的最佳工艺条件下,采用多模方束二极管激光在不同能量密度下对铝-12硅立方体进行了去应力处理和表面抛光。结果表明,能量密度对激光辅助粉末床熔融增材制件的表面粗糙度、重熔深度、残余应力和显微组织有较大影响。在最佳能量密度下,增材制造零件的表面粗糙度降低了82%,初始混沌织构平滑,残余拉伸应力降至零水平。事实上,在最佳能量密度下进行激光表面抛光,由于细化的快速凝固组织,使初始增材制造零件的表面和表面下显微硬度从65 HV 0.5 ~ 75 HV 0.5提高到75 HV 0.5 ~ 100 HV 0.5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of laser surface polishing on surface topology and residual stress in laser powder bed fusion additively manufactured aluminium-12 silicon part
      Einfluss des Laserstrahloberflächenpolierens auf die Oberflächentopologie und die Eigenspannungen in einem durch Laserstrahl-Pulverbettschmelzen additiv gefertigten AlSi12-Bauteil

Influence of laser surface polishing on surface topology and residual stress in laser powder bed fusion additively manufactured aluminium-12 silicon part Einfluss des Laserstrahloberflächenpolierens auf die Oberflächentopologie und die Eigenspannungen in einem durch Laserstrahl-Pulverbettschmelzen additiv gefertigten AlSi12-Bauteil

Laser-assisted additive manufactured surfaces are more often inherently associated with surface and subsurface defects such as poor surface texture, high surface roughness, high tensile residual stress, porosity etc. Depending on the design and methodology adopted, these factors entail limitations in improving the functional properties of additively manufactured parts. Post-processing often becomes mandatory to improve surface finish, residual stresses and other surface-dependent properties. Nowadays, aluminium alloys are widely used for lightweighting in aerospace, aircraft and automotive industries with special emphasis on manufacturing complex design and multi-functional components employing additive manufacturing routes (both laser and non-laser based). The present work aims to demonstrate laser surface polishing (by remelting) of laser-assisted powder bed fusion aluminium-12silicon additively manufactured parts as a viable post-processing technique to improve surface properties. Aluminium-12 silicon cubes printed by laser powder bed fusion at optimum processing conditions having high relative density were stress-relived and subjected to laser surface polishing employing a multi-mode square-beam diode laser under varying energy densities. Results indicated a profound influence of energy density on resulting surface roughness, remelted depth, residual stress and microstructure of laser-assisted powder bed fusion additive manufactured parts. At optimum energy density, the surface roughness of the additive manufactured part was reduced by 82 % with smoothing of initial chaotic texture and reduction in residual tensile stress to zero-level. Indeed, laser surface polishing at optimum energy density enhanced surface and subsurface micro-hardness to 75 HV 0.5 – 100 HV 0.5 from 65 HV 0.5 – 75 HV 0.5 in the initial additive manufactured part on account of refined rapidly solidified structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialwissenschaft und Werkstofftechnik
Materialwissenschaft und Werkstofftechnik 工程技术-材料科学:综合
CiteScore
2.10
自引率
9.10%
发文量
154
审稿时长
4-8 weeks
期刊介绍: Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing. Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline. Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信