{"title":"Celastrol通过增强小胶质细胞TBX21/TREM2表达和抑制Tau磷酸化改善小鼠阿尔茨海默病","authors":"Fanfan Cao, Pan Zhang, Yongbin Chi, Ying Wang, Limin Xu, Denghai Zhang","doi":"10.1007/s11064-025-04375-1","DOIUrl":null,"url":null,"abstract":"<div><p>Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder that is typified by the formation of senile plaques containing Aβ and neurofibrillary tangles containing tau in a hyperphosphorylated state. Celastrol, a natural compound, has proven effective in alleviating AD pathology by enhancing autophagy and reducing tau aggregates. The present study investigates the neuroprotective mechanisms of celastrol, with a particular focus on the participation of the transcription factor T-box transcription factor 21 (TBX21) and triggering receptor expressed on myeloid cells 2 (TREM2) in microglial cells. In AD mouse models, celastrol upregulated TBX21 and TREM2, suppressed phosphorylated tau and inflammatory cytokines, and restored neuronal viability. In vitro, celastrol-treated microglia enhanced neuronal survival under amyloid-beta (Aβ) stress, effects abolished by TBX21/TREM2 knockdown. Mechanistically, TBX21 directly bound the TREM2 promoter to regulate its expression. These findings identified the TBX21-TREM2 axis as a therapeutic target for AD.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Celastrol Ameliorated Alzheimer’s Disease in Mice by Enhancing TBX21/TREM2 Expression in Microglia and Inhibiting Tau Phosphorylation\",\"authors\":\"Fanfan Cao, Pan Zhang, Yongbin Chi, Ying Wang, Limin Xu, Denghai Zhang\",\"doi\":\"10.1007/s11064-025-04375-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder that is typified by the formation of senile plaques containing Aβ and neurofibrillary tangles containing tau in a hyperphosphorylated state. Celastrol, a natural compound, has proven effective in alleviating AD pathology by enhancing autophagy and reducing tau aggregates. The present study investigates the neuroprotective mechanisms of celastrol, with a particular focus on the participation of the transcription factor T-box transcription factor 21 (TBX21) and triggering receptor expressed on myeloid cells 2 (TREM2) in microglial cells. In AD mouse models, celastrol upregulated TBX21 and TREM2, suppressed phosphorylated tau and inflammatory cytokines, and restored neuronal viability. In vitro, celastrol-treated microglia enhanced neuronal survival under amyloid-beta (Aβ) stress, effects abolished by TBX21/TREM2 knockdown. Mechanistically, TBX21 directly bound the TREM2 promoter to regulate its expression. These findings identified the TBX21-TREM2 axis as a therapeutic target for AD.</p></div>\",\"PeriodicalId\":719,\"journal\":{\"name\":\"Neurochemical Research\",\"volume\":\"50 2\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11064-025-04375-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-025-04375-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Celastrol Ameliorated Alzheimer’s Disease in Mice by Enhancing TBX21/TREM2 Expression in Microglia and Inhibiting Tau Phosphorylation
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder that is typified by the formation of senile plaques containing Aβ and neurofibrillary tangles containing tau in a hyperphosphorylated state. Celastrol, a natural compound, has proven effective in alleviating AD pathology by enhancing autophagy and reducing tau aggregates. The present study investigates the neuroprotective mechanisms of celastrol, with a particular focus on the participation of the transcription factor T-box transcription factor 21 (TBX21) and triggering receptor expressed on myeloid cells 2 (TREM2) in microglial cells. In AD mouse models, celastrol upregulated TBX21 and TREM2, suppressed phosphorylated tau and inflammatory cytokines, and restored neuronal viability. In vitro, celastrol-treated microglia enhanced neuronal survival under amyloid-beta (Aβ) stress, effects abolished by TBX21/TREM2 knockdown. Mechanistically, TBX21 directly bound the TREM2 promoter to regulate its expression. These findings identified the TBX21-TREM2 axis as a therapeutic target for AD.
期刊介绍:
Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.