SCA-Net:基于多任务学习的网络,用于 SAR 图像的海杂波振幅分布预测

Chi Zhang;Genwang Liu;Chenghui Cao;Jun Sun;Yongshou Dai;Xi Zhang
{"title":"SCA-Net:基于多任务学习的网络,用于 SAR 图像的海杂波振幅分布预测","authors":"Chi Zhang;Genwang Liu;Chenghui Cao;Jun Sun;Yongshou Dai;Xi Zhang","doi":"10.1109/LGRS.2025.3550409","DOIUrl":null,"url":null,"abstract":"Rapid and accurate prediction of the sea clutter amplitude distribution is essential to improve target detection capability in synthetic aperture radar (SAR) imagery. In this letter, we propose a sea clutter amplitude network (SCA-Net) based on multitask learning for sea clutter amplitude distribution prediction (SCADP) of SAR images. To reduce the number of model parameters, we design a shallow residual network structure with four residual blocks and replace the normal convolution with depthwise separable convolution in the residual blocks. The efficient channel attention (ECA) module is incorporated into each residual block to strengthen the model’s feature extraction capability. To validate the performance of the model, we construct a SCADP dataset using GaoFen-3 wave mode data. The experimental results on the SCADP dataset indicate that the proposed method achieves the highest prediction accuracy, which proves that the method can effectively achieve integrated prediction of amplitude distribution types and parameters of sea clutter.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCA-Net: A Network Based on Multitask Learning for Sea Clutter Amplitude Distribution Prediction of SAR Images\",\"authors\":\"Chi Zhang;Genwang Liu;Chenghui Cao;Jun Sun;Yongshou Dai;Xi Zhang\",\"doi\":\"10.1109/LGRS.2025.3550409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid and accurate prediction of the sea clutter amplitude distribution is essential to improve target detection capability in synthetic aperture radar (SAR) imagery. In this letter, we propose a sea clutter amplitude network (SCA-Net) based on multitask learning for sea clutter amplitude distribution prediction (SCADP) of SAR images. To reduce the number of model parameters, we design a shallow residual network structure with four residual blocks and replace the normal convolution with depthwise separable convolution in the residual blocks. The efficient channel attention (ECA) module is incorporated into each residual block to strengthen the model’s feature extraction capability. To validate the performance of the model, we construct a SCADP dataset using GaoFen-3 wave mode data. The experimental results on the SCADP dataset indicate that the proposed method achieves the highest prediction accuracy, which proves that the method can effectively achieve integrated prediction of amplitude distribution types and parameters of sea clutter.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10921652/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10921652/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
SCA-Net: A Network Based on Multitask Learning for Sea Clutter Amplitude Distribution Prediction of SAR Images
Rapid and accurate prediction of the sea clutter amplitude distribution is essential to improve target detection capability in synthetic aperture radar (SAR) imagery. In this letter, we propose a sea clutter amplitude network (SCA-Net) based on multitask learning for sea clutter amplitude distribution prediction (SCADP) of SAR images. To reduce the number of model parameters, we design a shallow residual network structure with four residual blocks and replace the normal convolution with depthwise separable convolution in the residual blocks. The efficient channel attention (ECA) module is incorporated into each residual block to strengthen the model’s feature extraction capability. To validate the performance of the model, we construct a SCADP dataset using GaoFen-3 wave mode data. The experimental results on the SCADP dataset indicate that the proposed method achieves the highest prediction accuracy, which proves that the method can effectively achieve integrated prediction of amplitude distribution types and parameters of sea clutter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信