自适应的生产性能监控框架,在不同的操作制度

IF 12.2 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Joao Paulo Jacomini Prioli , Nur Banu Altinpulluk , Jeremy L. Rickli , Murat Yildirim
{"title":"自适应的生产性能监控框架,在不同的操作制度","authors":"Joao Paulo Jacomini Prioli ,&nbsp;Nur Banu Altinpulluk ,&nbsp;Jeremy L. Rickli ,&nbsp;Murat Yildirim","doi":"10.1016/j.jmsy.2025.02.011","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic operational regimes in modern manufacturing systems generate a myriad of challenges for production performance monitoring applications. Heterogeneous data streams and fast production changeovers often complicate sensor information, leading to misinterpretation of systemic performance issues. Conventional methods address this problem by explicitly modeling these operational regimes. However, it requires significant engineering hours and expertise, constituting a substantial adoption barrier for small-to-medium enterprises (SMEs). This paper proposes a self-adaptive smart monitoring framework that autonomously discovers and accounts for operational regime changes to offer accurate predictions on systemic performance despite the complexities in continuous multi-sourced data acquisition and dynamic regime behavior of machines. Computational experiments tested the methodology using a predictive system in two manufacturing cells under dynamic operational regimes. The proposed framework outperforms benchmark policies commonly used in prediction models by improving prediction accuracy from 3% to 62%, along with a better convergence rate. The results demonstrated that the proposed framework can positively impact smart maintenance implementation for SMEs with limited resources.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"80 ","pages":"Pages 380-394"},"PeriodicalIF":12.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-adaptive production performance monitoring framework under different operating regimes\",\"authors\":\"Joao Paulo Jacomini Prioli ,&nbsp;Nur Banu Altinpulluk ,&nbsp;Jeremy L. Rickli ,&nbsp;Murat Yildirim\",\"doi\":\"10.1016/j.jmsy.2025.02.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dynamic operational regimes in modern manufacturing systems generate a myriad of challenges for production performance monitoring applications. Heterogeneous data streams and fast production changeovers often complicate sensor information, leading to misinterpretation of systemic performance issues. Conventional methods address this problem by explicitly modeling these operational regimes. However, it requires significant engineering hours and expertise, constituting a substantial adoption barrier for small-to-medium enterprises (SMEs). This paper proposes a self-adaptive smart monitoring framework that autonomously discovers and accounts for operational regime changes to offer accurate predictions on systemic performance despite the complexities in continuous multi-sourced data acquisition and dynamic regime behavior of machines. Computational experiments tested the methodology using a predictive system in two manufacturing cells under dynamic operational regimes. The proposed framework outperforms benchmark policies commonly used in prediction models by improving prediction accuracy from 3% to 62%, along with a better convergence rate. The results demonstrated that the proposed framework can positively impact smart maintenance implementation for SMEs with limited resources.</div></div>\",\"PeriodicalId\":16227,\"journal\":{\"name\":\"Journal of Manufacturing Systems\",\"volume\":\"80 \",\"pages\":\"Pages 380-394\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S027861252500041X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027861252500041X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

现代制造系统中的动态操作制度为生产性能监控应用带来了无数的挑战。异构数据流和快速生产变化通常使传感器信息复杂化,导致对系统性能问题的误解。传统方法通过显式地对这些操作机制建模来解决这个问题。然而,它需要大量的工程时间和专业知识,这对中小型企业(SMEs)构成了很大的采用障碍。本文提出了一种自适应智能监控框架,该框架可以自主发现和解释运行状态的变化,从而在连续多源数据采集和机器动态状态行为的复杂性下提供对系统性能的准确预测。计算实验测试了该方法使用预测系统在两个制造单元在动态操作制度。该框架优于预测模型中常用的基准策略,将预测准确率从3%提高到62%,并具有更好的收敛速度。结果表明,该框架对资源有限的中小企业智能维护实施具有积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-adaptive production performance monitoring framework under different operating regimes

Self-adaptive production performance monitoring framework under different operating regimes
Dynamic operational regimes in modern manufacturing systems generate a myriad of challenges for production performance monitoring applications. Heterogeneous data streams and fast production changeovers often complicate sensor information, leading to misinterpretation of systemic performance issues. Conventional methods address this problem by explicitly modeling these operational regimes. However, it requires significant engineering hours and expertise, constituting a substantial adoption barrier for small-to-medium enterprises (SMEs). This paper proposes a self-adaptive smart monitoring framework that autonomously discovers and accounts for operational regime changes to offer accurate predictions on systemic performance despite the complexities in continuous multi-sourced data acquisition and dynamic regime behavior of machines. Computational experiments tested the methodology using a predictive system in two manufacturing cells under dynamic operational regimes. The proposed framework outperforms benchmark policies commonly used in prediction models by improving prediction accuracy from 3% to 62%, along with a better convergence rate. The results demonstrated that the proposed framework can positively impact smart maintenance implementation for SMEs with limited resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Manufacturing Systems
Journal of Manufacturing Systems 工程技术-工程:工业
CiteScore
23.30
自引率
13.20%
发文量
216
审稿时长
25 days
期刊介绍: The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs. With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信