弹性简并字符串比较

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Estéban Gabory , Moses Njagi Mwaniki , Nadia Pisanti , Solon P. Pissis , Jakub Radoszewski , Michelle Sweering , Wiktor Zuba
{"title":"弹性简并字符串比较","authors":"Estéban Gabory ,&nbsp;Moses Njagi Mwaniki ,&nbsp;Nadia Pisanti ,&nbsp;Solon P. Pissis ,&nbsp;Jakub Radoszewski ,&nbsp;Michelle Sweering ,&nbsp;Wiktor Zuba","doi":"10.1016/j.ic.2025.105296","DOIUrl":null,"url":null,"abstract":"<div><div>An elastic-degenerate (ED) string <em>T</em> is a sequence of <em>n</em> sets <span><math><mi>T</mi><mo>[</mo><mn>1</mn><mo>]</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>T</mi><mo>[</mo><mi>n</mi><mo>]</mo></math></span> containing <em>m</em> strings in total whose cumulative length is <em>N</em>. We call <em>n</em>, <em>m</em>, and <em>N</em> the length, the cardinality and the size of <em>T</em>, respectively. The language of <em>T</em> is defined as <span><math><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mspace></mspace><mo>:</mo><mspace></mspace><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>T</mi><mo>[</mo><mi>i</mi><mo>]</mo><mtext> for all </mtext><mi>i</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>]</mo><mo>}</mo></math></span>. Given two ED strings, how fast can we check whether the two languages they represent have a nonempty intersection? We call this problem the <span>ED String Intersection</span> (EDSI) problem. For two ED strings <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of lengths <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, cardinalities <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and sizes <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, respectively, we show the following:<ul><li><span>•</span><span><div>There is no <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mrow><mn>1</mn><mo>−</mo><mi>ϵ</mi></mrow></msup><mo>)</mo></math></span>-time algorithm, for any <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span>, for EDSI even if <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are over a binary alphabet, unless the Strong Exponential-Time Hypothesis is false.</div></span></li><li><span>•</span><span><div>There is no combinatorial <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mrow><mn>1.2</mn><mo>−</mo><mi>ϵ</mi></mrow></msup><mi>f</mi><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>)</mo></math></span>-time algorithm, for any <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span> and any function <em>f</em>, for EDSI even if <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are over a binary alphabet, unless the Boolean Matrix Multiplication conjecture is false.</div></span></li><li><span>•</span><span><div>An <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>log</mi><mo>⁡</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>log</mi><mo>⁡</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>log</mi><mo>⁡</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>log</mi><mo>⁡</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-time algorithm for outputting a compact representation of the intersection language of two unary ED strings. When <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are given in a compact representation, we show that the problem is NP-complete.</div></span></li><li><span>•</span><span><div>An <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>-time algorithm for EDSI.</div></span></li><li><span>•</span><span><div>An <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>ω</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>ω</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>-time algorithm for EDSI, where <em>ω</em> is the matrix multiplication exponent; the <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> notation suppresses factors that are polylogarithmic in the input size.</div></span></li></ul></div></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"304 ","pages":"Article 105296"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic-degenerate string comparison\",\"authors\":\"Estéban Gabory ,&nbsp;Moses Njagi Mwaniki ,&nbsp;Nadia Pisanti ,&nbsp;Solon P. Pissis ,&nbsp;Jakub Radoszewski ,&nbsp;Michelle Sweering ,&nbsp;Wiktor Zuba\",\"doi\":\"10.1016/j.ic.2025.105296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An elastic-degenerate (ED) string <em>T</em> is a sequence of <em>n</em> sets <span><math><mi>T</mi><mo>[</mo><mn>1</mn><mo>]</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>T</mi><mo>[</mo><mi>n</mi><mo>]</mo></math></span> containing <em>m</em> strings in total whose cumulative length is <em>N</em>. We call <em>n</em>, <em>m</em>, and <em>N</em> the length, the cardinality and the size of <em>T</em>, respectively. The language of <em>T</em> is defined as <span><math><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mspace></mspace><mo>:</mo><mspace></mspace><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>T</mi><mo>[</mo><mi>i</mi><mo>]</mo><mtext> for all </mtext><mi>i</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>]</mo><mo>}</mo></math></span>. Given two ED strings, how fast can we check whether the two languages they represent have a nonempty intersection? We call this problem the <span>ED String Intersection</span> (EDSI) problem. For two ED strings <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of lengths <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, cardinalities <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and sizes <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, respectively, we show the following:<ul><li><span>•</span><span><div>There is no <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mrow><mn>1</mn><mo>−</mo><mi>ϵ</mi></mrow></msup><mo>)</mo></math></span>-time algorithm, for any <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span>, for EDSI even if <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are over a binary alphabet, unless the Strong Exponential-Time Hypothesis is false.</div></span></li><li><span>•</span><span><div>There is no combinatorial <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mrow><mn>1.2</mn><mo>−</mo><mi>ϵ</mi></mrow></msup><mi>f</mi><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>)</mo></math></span>-time algorithm, for any <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span> and any function <em>f</em>, for EDSI even if <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are over a binary alphabet, unless the Boolean Matrix Multiplication conjecture is false.</div></span></li><li><span>•</span><span><div>An <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>log</mi><mo>⁡</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>log</mi><mo>⁡</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>log</mi><mo>⁡</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>log</mi><mo>⁡</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-time algorithm for outputting a compact representation of the intersection language of two unary ED strings. When <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are given in a compact representation, we show that the problem is NP-complete.</div></span></li><li><span>•</span><span><div>An <span><math><mi>O</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>-time algorithm for EDSI.</div></span></li><li><span>•</span><span><div>An <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>ω</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>ω</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>-time algorithm for EDSI, where <em>ω</em> is the matrix multiplication exponent; the <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> notation suppresses factors that are polylogarithmic in the input size.</div></span></li></ul></div></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"304 \",\"pages\":\"Article 105296\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089054012500032X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089054012500032X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

弹性简并(ED)字符串T是由n个集合T[1],…,T[n]组成的序列,其中总共包含m个字符串,其累积长度为n。我们将n, m, n分别称为T的长度,基数和大小。T的语言定义为L(T)={S1⋯Sn:Si∈T[i],对于所有i∈[1,n]}。给定两个ED字符串,我们可以多快地检查它们所代表的两种语言是否有非空交集?我们称这个问题为ED弦相交问题。对于长度n1和n2,基数m1和m2,大小分别为n1和n2的两个ED字符串T1和T2,我们展示了以下内容:•对于任何ϵ>;0,对于EDSI,即使T1和T2在二进制字母表上,也没有O((N1N2)1−λ)时间算法,除非强指数时间假设是假的。•对于任何ϵ>;0和任何函数f,对于EDSI,除非布尔矩阵乘法猜想为假,否则不存在组合O((N1+N2)1.2−ϵf(N1, N2))时间算法,即使T1和T2在二进制字母表上。•用于输出两个一元ED字符串的相交语言的紧凑表示的O(N1log (N1log)) n +N2log (N2log) n时间算法。当T1和T2以紧表示形式给出时,我们证明了问题是np完全的。•EDSI的O(N1m2+N2m1)时间算法。•EDSI的O ~ (N1ω−1n2+N2ω−1n1)时间算法,其中ω为矩阵乘法指数;O ~表示法抑制了输入大小中的多对数因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elastic-degenerate string comparison
An elastic-degenerate (ED) string T is a sequence of n sets T[1],,T[n] containing m strings in total whose cumulative length is N. We call n, m, and N the length, the cardinality and the size of T, respectively. The language of T is defined as L(T)={S1Sn:SiT[i] for all i[1,n]}. Given two ED strings, how fast can we check whether the two languages they represent have a nonempty intersection? We call this problem the ED String Intersection (EDSI) problem. For two ED strings T1 and T2 of lengths n1 and n2, cardinalities m1 and m2, and sizes N1 and N2, respectively, we show the following:
  • There is no O((N1N2)1ϵ)-time algorithm, for any ϵ>0, for EDSI even if T1 and T2 are over a binary alphabet, unless the Strong Exponential-Time Hypothesis is false.
  • There is no combinatorial O((N1+N2)1.2ϵf(n1,n2))-time algorithm, for any ϵ>0 and any function f, for EDSI even if T1 and T2 are over a binary alphabet, unless the Boolean Matrix Multiplication conjecture is false.
  • An O(N1logN1logn1+N2logN2logn2)-time algorithm for outputting a compact representation of the intersection language of two unary ED strings. When T1 and T2 are given in a compact representation, we show that the problem is NP-complete.
  • An O(N1m2+N2m1)-time algorithm for EDSI.
  • An O˜(N1ω1n2+N2ω1n1)-time algorithm for EDSI, where ω is the matrix multiplication exponent; the O˜ notation suppresses factors that are polylogarithmic in the input size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信