一种基于格拉斯曼流形上体积互相关函数的STAP算法

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jia-Mian Li , Jian-Yi Chen , Bing-Zhao Li
{"title":"一种基于格拉斯曼流形上体积互相关函数的STAP算法","authors":"Jia-Mian Li ,&nbsp;Jian-Yi Chen ,&nbsp;Bing-Zhao Li","doi":"10.1016/j.dsp.2025.105164","DOIUrl":null,"url":null,"abstract":"<div><div>The performance of space-time adaptive processing (STAP) is often degraded by factors such as limited sample size and moving targets. Traditional clutter covariance matrix (CCM) estimation relies on Euclidean metrics, which fail to capture the intrinsic geometric and structural properties of the covariance matrix, thus limiting the utilization of structural information in the data. To address these issues, the proposed algorithm begins by constructing Toeplitz Hermitian positive definite (THPD) matrices from the training samples. The Brauer disc (BD) theorem is then employed to filter out THPD matrices containing target signals, retaining only clutter-related matrices. These clutter matrices undergo eigendecomposition to construct the Grassmann manifold, enabling CCM estimation through the volume cross-correlation function (VCF) and gradient descent method. Finally, the filter weight vector is computed for filtering. By fully leveraging the structural information in radar data, this approach significantly enhances both accuracy and robustness of clutter suppression. Experimental results on simulated and measured data demonstrate superior performance of the proposed algorithm in heterogeneous environments.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"162 ","pages":"Article 105164"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel STAP algorithm via volume cross-correlation function on the Grassmann manifold\",\"authors\":\"Jia-Mian Li ,&nbsp;Jian-Yi Chen ,&nbsp;Bing-Zhao Li\",\"doi\":\"10.1016/j.dsp.2025.105164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The performance of space-time adaptive processing (STAP) is often degraded by factors such as limited sample size and moving targets. Traditional clutter covariance matrix (CCM) estimation relies on Euclidean metrics, which fail to capture the intrinsic geometric and structural properties of the covariance matrix, thus limiting the utilization of structural information in the data. To address these issues, the proposed algorithm begins by constructing Toeplitz Hermitian positive definite (THPD) matrices from the training samples. The Brauer disc (BD) theorem is then employed to filter out THPD matrices containing target signals, retaining only clutter-related matrices. These clutter matrices undergo eigendecomposition to construct the Grassmann manifold, enabling CCM estimation through the volume cross-correlation function (VCF) and gradient descent method. Finally, the filter weight vector is computed for filtering. By fully leveraging the structural information in radar data, this approach significantly enhances both accuracy and robustness of clutter suppression. Experimental results on simulated and measured data demonstrate superior performance of the proposed algorithm in heterogeneous environments.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"162 \",\"pages\":\"Article 105164\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200425001861\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200425001861","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

时空自适应处理(STAP)的性能经常受到样本容量有限和目标移动等因素的影响。传统的杂波协方差矩阵(CCM)估计依赖于欧几里德度量,无法捕捉协方差矩阵固有的几何和结构特性,从而限制了数据中结构信息的利用。为了解决这些问题,提出的算法首先从训练样本构造Toeplitz hermite正定矩阵(THPD)。然后利用Brauer disc (BD)定理滤除包含目标信号的THPD矩阵,仅保留与杂波相关的矩阵。这些杂波矩阵经过特征分解构造Grassmann流形,通过体积相互关联函数(VCF)和梯度下降法实现CCM估计。最后,计算滤波器权重向量进行滤波。该方法充分利用雷达数据中的结构信息,显著提高了杂波抑制的精度和鲁棒性。仿真和实测数据的实验结果表明,该算法在异构环境下具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel STAP algorithm via volume cross-correlation function on the Grassmann manifold
The performance of space-time adaptive processing (STAP) is often degraded by factors such as limited sample size and moving targets. Traditional clutter covariance matrix (CCM) estimation relies on Euclidean metrics, which fail to capture the intrinsic geometric and structural properties of the covariance matrix, thus limiting the utilization of structural information in the data. To address these issues, the proposed algorithm begins by constructing Toeplitz Hermitian positive definite (THPD) matrices from the training samples. The Brauer disc (BD) theorem is then employed to filter out THPD matrices containing target signals, retaining only clutter-related matrices. These clutter matrices undergo eigendecomposition to construct the Grassmann manifold, enabling CCM estimation through the volume cross-correlation function (VCF) and gradient descent method. Finally, the filter weight vector is computed for filtering. By fully leveraging the structural information in radar data, this approach significantly enhances both accuracy and robustness of clutter suppression. Experimental results on simulated and measured data demonstrate superior performance of the proposed algorithm in heterogeneous environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信