{"title":"一种基于格拉斯曼流形上体积互相关函数的STAP算法","authors":"Jia-Mian Li , Jian-Yi Chen , Bing-Zhao Li","doi":"10.1016/j.dsp.2025.105164","DOIUrl":null,"url":null,"abstract":"<div><div>The performance of space-time adaptive processing (STAP) is often degraded by factors such as limited sample size and moving targets. Traditional clutter covariance matrix (CCM) estimation relies on Euclidean metrics, which fail to capture the intrinsic geometric and structural properties of the covariance matrix, thus limiting the utilization of structural information in the data. To address these issues, the proposed algorithm begins by constructing Toeplitz Hermitian positive definite (THPD) matrices from the training samples. The Brauer disc (BD) theorem is then employed to filter out THPD matrices containing target signals, retaining only clutter-related matrices. These clutter matrices undergo eigendecomposition to construct the Grassmann manifold, enabling CCM estimation through the volume cross-correlation function (VCF) and gradient descent method. Finally, the filter weight vector is computed for filtering. By fully leveraging the structural information in radar data, this approach significantly enhances both accuracy and robustness of clutter suppression. Experimental results on simulated and measured data demonstrate superior performance of the proposed algorithm in heterogeneous environments.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"162 ","pages":"Article 105164"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel STAP algorithm via volume cross-correlation function on the Grassmann manifold\",\"authors\":\"Jia-Mian Li , Jian-Yi Chen , Bing-Zhao Li\",\"doi\":\"10.1016/j.dsp.2025.105164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The performance of space-time adaptive processing (STAP) is often degraded by factors such as limited sample size and moving targets. Traditional clutter covariance matrix (CCM) estimation relies on Euclidean metrics, which fail to capture the intrinsic geometric and structural properties of the covariance matrix, thus limiting the utilization of structural information in the data. To address these issues, the proposed algorithm begins by constructing Toeplitz Hermitian positive definite (THPD) matrices from the training samples. The Brauer disc (BD) theorem is then employed to filter out THPD matrices containing target signals, retaining only clutter-related matrices. These clutter matrices undergo eigendecomposition to construct the Grassmann manifold, enabling CCM estimation through the volume cross-correlation function (VCF) and gradient descent method. Finally, the filter weight vector is computed for filtering. By fully leveraging the structural information in radar data, this approach significantly enhances both accuracy and robustness of clutter suppression. Experimental results on simulated and measured data demonstrate superior performance of the proposed algorithm in heterogeneous environments.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"162 \",\"pages\":\"Article 105164\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200425001861\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200425001861","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A novel STAP algorithm via volume cross-correlation function on the Grassmann manifold
The performance of space-time adaptive processing (STAP) is often degraded by factors such as limited sample size and moving targets. Traditional clutter covariance matrix (CCM) estimation relies on Euclidean metrics, which fail to capture the intrinsic geometric and structural properties of the covariance matrix, thus limiting the utilization of structural information in the data. To address these issues, the proposed algorithm begins by constructing Toeplitz Hermitian positive definite (THPD) matrices from the training samples. The Brauer disc (BD) theorem is then employed to filter out THPD matrices containing target signals, retaining only clutter-related matrices. These clutter matrices undergo eigendecomposition to construct the Grassmann manifold, enabling CCM estimation through the volume cross-correlation function (VCF) and gradient descent method. Finally, the filter weight vector is computed for filtering. By fully leveraging the structural information in radar data, this approach significantly enhances both accuracy and robustness of clutter suppression. Experimental results on simulated and measured data demonstrate superior performance of the proposed algorithm in heterogeneous environments.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,