直观的轴向增强使用基于极正弦分段失真医学切片分割

Q2 Health Professions
Yiqin Zhang , Qingkui Chen , Chen Huang , Zhengjie Zhang , Meiling Chen , Zhibing Fu
{"title":"直观的轴向增强使用基于极正弦分段失真医学切片分割","authors":"Yiqin Zhang ,&nbsp;Qingkui Chen ,&nbsp;Chen Huang ,&nbsp;Zhengjie Zhang ,&nbsp;Meiling Chen ,&nbsp;Zhibing Fu","doi":"10.1016/j.smhl.2025.100556","DOIUrl":null,"url":null,"abstract":"<div><div>Most data-driven models for medical image analysis rely on universal augmentations to improve accuracy. Experimental evidence has confirmed their effectiveness, but the unclear mechanism underlying them poses a barrier to the widespread acceptance and trust in such methods within the medical community. We revisit and acknowledge the unique characteristics of medical images apart from traditional digital images, and consequently, proposed a medical-specific augmentation algorithm that is more elastic and aligns well with radiology scan procedure. The method performs piecewise affine with sinusoidal distorted ray according to radius on polar coordinates, thus simulating uncertain postures of human lying flat on the scanning table. Our method could generate human visceral distribution without affecting the fundamental relative position on axial plane. Two non-adaptive algorithms, namely Meta-based Scan Table Removal and Similarity-Guided Parameter Search, are introduced to bolster robustness of our augmentation method. In contrast to other methodologies, our method is highlighted for its intuitive design and ease of understanding for medical professionals, thereby enhancing its applicability in clinical scenarios. Experiments show our method improves accuracy with two modality across multiple famous segmentation frameworks without requiring more data samples. Our preview code is available in: <span><span>https://github.com/MGAMZ/PSBPD</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"36 ","pages":"Article 100556"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intuitive axial augmentation using polar-sine-based piecewise distortion for medical slice-wise segmentation\",\"authors\":\"Yiqin Zhang ,&nbsp;Qingkui Chen ,&nbsp;Chen Huang ,&nbsp;Zhengjie Zhang ,&nbsp;Meiling Chen ,&nbsp;Zhibing Fu\",\"doi\":\"10.1016/j.smhl.2025.100556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Most data-driven models for medical image analysis rely on universal augmentations to improve accuracy. Experimental evidence has confirmed their effectiveness, but the unclear mechanism underlying them poses a barrier to the widespread acceptance and trust in such methods within the medical community. We revisit and acknowledge the unique characteristics of medical images apart from traditional digital images, and consequently, proposed a medical-specific augmentation algorithm that is more elastic and aligns well with radiology scan procedure. The method performs piecewise affine with sinusoidal distorted ray according to radius on polar coordinates, thus simulating uncertain postures of human lying flat on the scanning table. Our method could generate human visceral distribution without affecting the fundamental relative position on axial plane. Two non-adaptive algorithms, namely Meta-based Scan Table Removal and Similarity-Guided Parameter Search, are introduced to bolster robustness of our augmentation method. In contrast to other methodologies, our method is highlighted for its intuitive design and ease of understanding for medical professionals, thereby enhancing its applicability in clinical scenarios. Experiments show our method improves accuracy with two modality across multiple famous segmentation frameworks without requiring more data samples. Our preview code is available in: <span><span>https://github.com/MGAMZ/PSBPD</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":37151,\"journal\":{\"name\":\"Smart Health\",\"volume\":\"36 \",\"pages\":\"Article 100556\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352648325000170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648325000170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

摘要

大多数用于医学图像分析的数据驱动模型依赖于通用增强来提高准确性。实验证据已经证实了它们的有效性,但其背后不明确的机制对医学界对这些方法的广泛接受和信任构成了障碍。我们重新审视并认识到医学图像与传统数字图像不同的独特性,并因此提出了一种更具弹性且与放射学扫描程序相匹配的医学特定增强算法。该方法根据极坐标上的半径对正弦畸变射线进行分段仿射,从而模拟人体平躺在扫描台上的不确定姿态。我们的方法可以在不影响人体内脏在轴向面的基本相对位置的情况下生成人体内脏的分布。引入了两种非自适应算法,即基于元的扫描表删除和相似性引导参数搜索,以增强我们的增强方法的鲁棒性。与其他方法相比,我们的方法以其直观的设计和易于医学专业人员理解而突出,从而增强了其在临床场景中的适用性。实验表明,该方法在不需要更多数据样本的情况下,在多个著名分割框架上使用两种模态提高了分割精度。我们的预览代码可在:https://github.com/MGAMZ/PSBPD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intuitive axial augmentation using polar-sine-based piecewise distortion for medical slice-wise segmentation

Intuitive axial augmentation using polar-sine-based piecewise distortion for medical slice-wise segmentation
Most data-driven models for medical image analysis rely on universal augmentations to improve accuracy. Experimental evidence has confirmed their effectiveness, but the unclear mechanism underlying them poses a barrier to the widespread acceptance and trust in such methods within the medical community. We revisit and acknowledge the unique characteristics of medical images apart from traditional digital images, and consequently, proposed a medical-specific augmentation algorithm that is more elastic and aligns well with radiology scan procedure. The method performs piecewise affine with sinusoidal distorted ray according to radius on polar coordinates, thus simulating uncertain postures of human lying flat on the scanning table. Our method could generate human visceral distribution without affecting the fundamental relative position on axial plane. Two non-adaptive algorithms, namely Meta-based Scan Table Removal and Similarity-Guided Parameter Search, are introduced to bolster robustness of our augmentation method. In contrast to other methodologies, our method is highlighted for its intuitive design and ease of understanding for medical professionals, thereby enhancing its applicability in clinical scenarios. Experiments show our method improves accuracy with two modality across multiple famous segmentation frameworks without requiring more data samples. Our preview code is available in: https://github.com/MGAMZ/PSBPD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信