{"title":"表面聚合中区域选择性及其演化的机理研究","authors":"Longzhu Zhang, Zi-Cong Wang, Ruoning Li, Jichen Dong, Zhi-Hao Li, An-Jing Zhao, Guan Luo, Ting Chen*, Dong Wang and Li-Jun Wan, ","doi":"10.1021/jacs.5c0359510.1021/jacs.5c03595","DOIUrl":null,"url":null,"abstract":"<p >Surface-catalyzed polymerization is crucial in both chemical science and industrial manufacturing, yet achieving regioselective radical polymerization on the surface remains challenging. Here, we demonstrate the regioselective Ullmann polymerization of nonsymmetrical 2,8-dibromoquinoline (DBQ) on an Au(111) surface. By combining scanning tunneling microscopy, density functional theory calculations, and kinetic modeling, we reveal the regioselectivity and its evolution with surface temperature at the molecular level. At 348–368 K, DBQ monomers primarily form covalent dimers through energetically favored head-to-head (HtH) coupling. As the temperature increases to 390–473 K, oligomers and long polymer chains are formed, with less favored head-to-tail (HtT) linkages emerging and eventually dominating over HtH linkages. Such regioselectivity evolution from HtH to HtT is suggested to be related to a sequential monomer addition mode and a shift in the distribution of reactive sites at the end and tail of the polymer chains during polymerization. This result provides molecular-level mechanistic insights into the regiochemistry of surface-catalyzed polymerization.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 12","pages":"10815–10822 10815–10822"},"PeriodicalIF":15.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Insights into Regioselectivity and Its Evolution in On-Surface Polymerization\",\"authors\":\"Longzhu Zhang, Zi-Cong Wang, Ruoning Li, Jichen Dong, Zhi-Hao Li, An-Jing Zhao, Guan Luo, Ting Chen*, Dong Wang and Li-Jun Wan, \",\"doi\":\"10.1021/jacs.5c0359510.1021/jacs.5c03595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Surface-catalyzed polymerization is crucial in both chemical science and industrial manufacturing, yet achieving regioselective radical polymerization on the surface remains challenging. Here, we demonstrate the regioselective Ullmann polymerization of nonsymmetrical 2,8-dibromoquinoline (DBQ) on an Au(111) surface. By combining scanning tunneling microscopy, density functional theory calculations, and kinetic modeling, we reveal the regioselectivity and its evolution with surface temperature at the molecular level. At 348–368 K, DBQ monomers primarily form covalent dimers through energetically favored head-to-head (HtH) coupling. As the temperature increases to 390–473 K, oligomers and long polymer chains are formed, with less favored head-to-tail (HtT) linkages emerging and eventually dominating over HtH linkages. Such regioselectivity evolution from HtH to HtT is suggested to be related to a sequential monomer addition mode and a shift in the distribution of reactive sites at the end and tail of the polymer chains during polymerization. This result provides molecular-level mechanistic insights into the regiochemistry of surface-catalyzed polymerization.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 12\",\"pages\":\"10815–10822 10815–10822\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c03595\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c03595","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanistic Insights into Regioselectivity and Its Evolution in On-Surface Polymerization
Surface-catalyzed polymerization is crucial in both chemical science and industrial manufacturing, yet achieving regioselective radical polymerization on the surface remains challenging. Here, we demonstrate the regioselective Ullmann polymerization of nonsymmetrical 2,8-dibromoquinoline (DBQ) on an Au(111) surface. By combining scanning tunneling microscopy, density functional theory calculations, and kinetic modeling, we reveal the regioselectivity and its evolution with surface temperature at the molecular level. At 348–368 K, DBQ monomers primarily form covalent dimers through energetically favored head-to-head (HtH) coupling. As the temperature increases to 390–473 K, oligomers and long polymer chains are formed, with less favored head-to-tail (HtT) linkages emerging and eventually dominating over HtH linkages. Such regioselectivity evolution from HtH to HtT is suggested to be related to a sequential monomer addition mode and a shift in the distribution of reactive sites at the end and tail of the polymer chains during polymerization. This result provides molecular-level mechanistic insights into the regiochemistry of surface-catalyzed polymerization.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.