Xinyao Xiang*, Lei Bruschweiler-Li, Joseph B. Schlenoff and Rafael Brüschweiler*,
{"title":"球状蛋白与两性离子二氧化硅纳米颗粒相互作用的核磁共振自旋弛豫动力学","authors":"Xinyao Xiang*, Lei Bruschweiler-Li, Joseph B. Schlenoff and Rafael Brüschweiler*, ","doi":"10.1021/jacs.4c1838010.1021/jacs.4c18380","DOIUrl":null,"url":null,"abstract":"<p >The many emerging applications of nanoparticles in diverse fields in chemistry and biology require the characterization of interactions between nanoparticles and surrounding biomolecules such as proteins. Nuclear magnetic resonance spin relaxation of proteins, which is highly sensitive to interactions with nanoparticles, contains rich information about protein mobility and binding kinetics. The interactions of globular proteins with silica nanoparticles differ markedly from those with liposome nanoparticles, although both are driven by electrostatic forces. For unmodified silica nanoparticles, their interactions with an internally rigid protein like ubiquitin uniformly increase the backbone amide <sup>15</sup>N transverse <i>R</i><sub>2</sub> relaxation for most residues. In contrast, for ubiquitin-POPG liposome interactions, their characteristic transverse <i>R</i><sub>2</sub> profiles indicate that ubiquitin undergoes diffusive rotational motions on the liposome surface. Here, we show that coating silica nanoparticles with sulfobetaine siloxane zwitterionic molecules profoundly alters their interactions with proteins in a manner that closely resembles the mode of interaction observed with liposomes. <sup>15</sup>N-<i>R</i><sub>2</sub> relaxation reveals that ubiquitin and the Ras-binding domain of B-Raf both exhibit axial reorientational motions about an axis perpendicular to the nanoparticle surface in the bound state, where the interactions involve predominantly positively charged surface regions. These findings point toward a global dynamics mechanism of proteins when interacting with organic or inorganic nanoparticles with densely charged soft surfaces. This information may help tailor the coatings of nanoparticles to adopt specific modes of interaction with proteins that can be used to control their function in vivo and in vitro.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 12","pages":"10485–10492 10485–10492"},"PeriodicalIF":15.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Globular Proteins when Interacting with Zwitterionic Silica Nanoparticles by Nuclear Magnetic Resonance Spin Relaxation\",\"authors\":\"Xinyao Xiang*, Lei Bruschweiler-Li, Joseph B. Schlenoff and Rafael Brüschweiler*, \",\"doi\":\"10.1021/jacs.4c1838010.1021/jacs.4c18380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The many emerging applications of nanoparticles in diverse fields in chemistry and biology require the characterization of interactions between nanoparticles and surrounding biomolecules such as proteins. Nuclear magnetic resonance spin relaxation of proteins, which is highly sensitive to interactions with nanoparticles, contains rich information about protein mobility and binding kinetics. The interactions of globular proteins with silica nanoparticles differ markedly from those with liposome nanoparticles, although both are driven by electrostatic forces. For unmodified silica nanoparticles, their interactions with an internally rigid protein like ubiquitin uniformly increase the backbone amide <sup>15</sup>N transverse <i>R</i><sub>2</sub> relaxation for most residues. In contrast, for ubiquitin-POPG liposome interactions, their characteristic transverse <i>R</i><sub>2</sub> profiles indicate that ubiquitin undergoes diffusive rotational motions on the liposome surface. Here, we show that coating silica nanoparticles with sulfobetaine siloxane zwitterionic molecules profoundly alters their interactions with proteins in a manner that closely resembles the mode of interaction observed with liposomes. <sup>15</sup>N-<i>R</i><sub>2</sub> relaxation reveals that ubiquitin and the Ras-binding domain of B-Raf both exhibit axial reorientational motions about an axis perpendicular to the nanoparticle surface in the bound state, where the interactions involve predominantly positively charged surface regions. These findings point toward a global dynamics mechanism of proteins when interacting with organic or inorganic nanoparticles with densely charged soft surfaces. This information may help tailor the coatings of nanoparticles to adopt specific modes of interaction with proteins that can be used to control their function in vivo and in vitro.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 12\",\"pages\":\"10485–10492 10485–10492\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c18380\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c18380","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamics of Globular Proteins when Interacting with Zwitterionic Silica Nanoparticles by Nuclear Magnetic Resonance Spin Relaxation
The many emerging applications of nanoparticles in diverse fields in chemistry and biology require the characterization of interactions between nanoparticles and surrounding biomolecules such as proteins. Nuclear magnetic resonance spin relaxation of proteins, which is highly sensitive to interactions with nanoparticles, contains rich information about protein mobility and binding kinetics. The interactions of globular proteins with silica nanoparticles differ markedly from those with liposome nanoparticles, although both are driven by electrostatic forces. For unmodified silica nanoparticles, their interactions with an internally rigid protein like ubiquitin uniformly increase the backbone amide 15N transverse R2 relaxation for most residues. In contrast, for ubiquitin-POPG liposome interactions, their characteristic transverse R2 profiles indicate that ubiquitin undergoes diffusive rotational motions on the liposome surface. Here, we show that coating silica nanoparticles with sulfobetaine siloxane zwitterionic molecules profoundly alters their interactions with proteins in a manner that closely resembles the mode of interaction observed with liposomes. 15N-R2 relaxation reveals that ubiquitin and the Ras-binding domain of B-Raf both exhibit axial reorientational motions about an axis perpendicular to the nanoparticle surface in the bound state, where the interactions involve predominantly positively charged surface regions. These findings point toward a global dynamics mechanism of proteins when interacting with organic or inorganic nanoparticles with densely charged soft surfaces. This information may help tailor the coatings of nanoparticles to adopt specific modes of interaction with proteins that can be used to control their function in vivo and in vitro.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.