{"title":"有机硅聚醚的无异构体合成","authors":"Ryan B. Baumgartner, Travis L. Sunderland","doi":"10.1021/acs.macromol.5c00394","DOIUrl":null,"url":null,"abstract":"Hydrosilylation is one of the most ubiquitous reactions in silicone chemistry, used to make and cure a variety of products that consumers interact with on a daily basis. A longstanding complication with this reaction is the propensity of platinum catalysts to isomerize terminal alkenes to internal alkenes that are far less reactive toward hydrosilylation. Here, we demonstrate that with the appropriate choice of Si–H substrate and control over the reaction conditions, these internal isomers can be reisomerized to the terminal alkene to then undergo hydrosilylation with Karstedt’s catalyst, an industry standard platinum catalyst. This ultimately leads to hydrosilylation products with no residual isomer content, on time scales relevant for industrial production. Only -SiMe<sub>2</sub>H (M′) substrates were capable of producing isomer free products, with -SiMeH- (D′) units as substrates resulting in high (>13 mol %) residual isomerized alkenes. Using this technology, low-isomer silicone polyether materials were synthesized with a final isomer content <1 mol %. Due to the propensity of residual isomerized species to undergo hydrolysis to propionaldehyde and other malodorous acetals, this technology is expected to reduce the odor of residual alkenyl species in silicone polyether materials in a cost-effective manner for industrial production.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"183 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isomer-Free Synthesis of Silicone Polyethers\",\"authors\":\"Ryan B. Baumgartner, Travis L. Sunderland\",\"doi\":\"10.1021/acs.macromol.5c00394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrosilylation is one of the most ubiquitous reactions in silicone chemistry, used to make and cure a variety of products that consumers interact with on a daily basis. A longstanding complication with this reaction is the propensity of platinum catalysts to isomerize terminal alkenes to internal alkenes that are far less reactive toward hydrosilylation. Here, we demonstrate that with the appropriate choice of Si–H substrate and control over the reaction conditions, these internal isomers can be reisomerized to the terminal alkene to then undergo hydrosilylation with Karstedt’s catalyst, an industry standard platinum catalyst. This ultimately leads to hydrosilylation products with no residual isomer content, on time scales relevant for industrial production. Only -SiMe<sub>2</sub>H (M′) substrates were capable of producing isomer free products, with -SiMeH- (D′) units as substrates resulting in high (>13 mol %) residual isomerized alkenes. Using this technology, low-isomer silicone polyether materials were synthesized with a final isomer content <1 mol %. Due to the propensity of residual isomerized species to undergo hydrolysis to propionaldehyde and other malodorous acetals, this technology is expected to reduce the odor of residual alkenyl species in silicone polyether materials in a cost-effective manner for industrial production.\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.macromol.5c00394\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.5c00394","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Hydrosilylation is one of the most ubiquitous reactions in silicone chemistry, used to make and cure a variety of products that consumers interact with on a daily basis. A longstanding complication with this reaction is the propensity of platinum catalysts to isomerize terminal alkenes to internal alkenes that are far less reactive toward hydrosilylation. Here, we demonstrate that with the appropriate choice of Si–H substrate and control over the reaction conditions, these internal isomers can be reisomerized to the terminal alkene to then undergo hydrosilylation with Karstedt’s catalyst, an industry standard platinum catalyst. This ultimately leads to hydrosilylation products with no residual isomer content, on time scales relevant for industrial production. Only -SiMe2H (M′) substrates were capable of producing isomer free products, with -SiMeH- (D′) units as substrates resulting in high (>13 mol %) residual isomerized alkenes. Using this technology, low-isomer silicone polyether materials were synthesized with a final isomer content <1 mol %. Due to the propensity of residual isomerized species to undergo hydrolysis to propionaldehyde and other malodorous acetals, this technology is expected to reduce the odor of residual alkenyl species in silicone polyether materials in a cost-effective manner for industrial production.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.