{"title":"拉格朗日量之间豪斯多夫距离的Hölder-type不等式。","authors":"Jean-Philippe Chassé, Rémi Leclercq","doi":"10.1007/s11784-025-01177-4","DOIUrl":null,"url":null,"abstract":"<p><p>We prove a Hölder-type inequality (in the spirit of Joksimović and Seyfaddini in Int Math Res Not IMRN 8:6303-6324, 2024) for the Hausdorff distance between Lagrangians with respect to the Lagrangian spectral distance or the Hofer-Chekanov distance. This inequality is established via methods developed by the first author (Chassé in Int J Math 34(5):2350024, 2023; Chassé in Differ Geom Appl 94:Paper No. 102123, 22, 2024) to understand the symplectic geometry of certain collections of Lagrangians under metric constraints.</p>","PeriodicalId":93461,"journal":{"name":"Journal of fixed point theory and Its applications","volume":"27 2","pages":"28"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923033/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Hölder-type inequality for the Hausdorff distance between Lagrangians.\",\"authors\":\"Jean-Philippe Chassé, Rémi Leclercq\",\"doi\":\"10.1007/s11784-025-01177-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We prove a Hölder-type inequality (in the spirit of Joksimović and Seyfaddini in Int Math Res Not IMRN 8:6303-6324, 2024) for the Hausdorff distance between Lagrangians with respect to the Lagrangian spectral distance or the Hofer-Chekanov distance. This inequality is established via methods developed by the first author (Chassé in Int J Math 34(5):2350024, 2023; Chassé in Differ Geom Appl 94:Paper No. 102123, 22, 2024) to understand the symplectic geometry of certain collections of Lagrangians under metric constraints.</p>\",\"PeriodicalId\":93461,\"journal\":{\"name\":\"Journal of fixed point theory and Its applications\",\"volume\":\"27 2\",\"pages\":\"28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923033/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of fixed point theory and Its applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11784-025-01177-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of fixed point theory and Its applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11784-025-01177-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了拉格朗日量之间的豪斯多夫距离相对于拉格朗日谱距离或霍夫-契卡诺夫距离的Hölder-type不等式(以joksimoviki和Seyfaddini在Int Math Res Not IMRN 8:6303- 6324,2024中的精神)。这个不等式是通过第一作者开发的方法建立的(chass in Int J Math 34(5): 2350024,2023;[j] .数学学报(自然科学版),2004,(2):1 - 3。
A Hölder-type inequality for the Hausdorff distance between Lagrangians.
We prove a Hölder-type inequality (in the spirit of Joksimović and Seyfaddini in Int Math Res Not IMRN 8:6303-6324, 2024) for the Hausdorff distance between Lagrangians with respect to the Lagrangian spectral distance or the Hofer-Chekanov distance. This inequality is established via methods developed by the first author (Chassé in Int J Math 34(5):2350024, 2023; Chassé in Differ Geom Appl 94:Paper No. 102123, 22, 2024) to understand the symplectic geometry of certain collections of Lagrangians under metric constraints.