{"title":"卫生站位置优化的聚类算法设计。","authors":"Pasi Fränti, Sami Sieranoja, Tiina Laatikainen","doi":"10.1186/s12942-025-00390-1","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we define the optimization of health station locations as a clustering problem. We design a robust algorithm for the problem using a pre-calculated overhead graph for fast distance calculations and apply a robust clustering algorithm called random swap to provide accurate optimization results. We study the effect of three cost functions (Euclidean distance, squared Euclidean distance, travel cost) using real patient locations in North Karelia, Finland. We compare the optimization results with the existing health station locations. We found that the algorithm optimized the locations beyond administrative borders and strongly utilized the transport network. The results can provide additional insight for the decision-makers.</p>","PeriodicalId":48739,"journal":{"name":"International Journal of Health Geographics","volume":"24 1","pages":"4"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929219/pdf/","citationCount":"0","resultStr":"{\"title\":\"Designing a clustering algorithm for optimizing health station locations.\",\"authors\":\"Pasi Fränti, Sami Sieranoja, Tiina Laatikainen\",\"doi\":\"10.1186/s12942-025-00390-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we define the optimization of health station locations as a clustering problem. We design a robust algorithm for the problem using a pre-calculated overhead graph for fast distance calculations and apply a robust clustering algorithm called random swap to provide accurate optimization results. We study the effect of three cost functions (Euclidean distance, squared Euclidean distance, travel cost) using real patient locations in North Karelia, Finland. We compare the optimization results with the existing health station locations. We found that the algorithm optimized the locations beyond administrative borders and strongly utilized the transport network. The results can provide additional insight for the decision-makers.</p>\",\"PeriodicalId\":48739,\"journal\":{\"name\":\"International Journal of Health Geographics\",\"volume\":\"24 1\",\"pages\":\"4\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929219/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Health Geographics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12942-025-00390-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Health Geographics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12942-025-00390-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Designing a clustering algorithm for optimizing health station locations.
In this paper, we define the optimization of health station locations as a clustering problem. We design a robust algorithm for the problem using a pre-calculated overhead graph for fast distance calculations and apply a robust clustering algorithm called random swap to provide accurate optimization results. We study the effect of three cost functions (Euclidean distance, squared Euclidean distance, travel cost) using real patient locations in North Karelia, Finland. We compare the optimization results with the existing health station locations. We found that the algorithm optimized the locations beyond administrative borders and strongly utilized the transport network. The results can provide additional insight for the decision-makers.
期刊介绍:
A leader among the field, International Journal of Health Geographics is an interdisciplinary, open access journal publishing internationally significant studies of geospatial information systems and science applications in health and healthcare. With an exceptional author satisfaction rate and a quick time to first decision, the journal caters to readers across an array of healthcare disciplines globally.
International Journal of Health Geographics welcomes novel studies in the health and healthcare context spanning from spatial data infrastructure and Web geospatial interoperability research, to research into real-time Geographic Information Systems (GIS)-enabled surveillance services, remote sensing applications, spatial epidemiology, spatio-temporal statistics, internet GIS and cyberspace mapping, participatory GIS and citizen sensing, geospatial big data, healthy smart cities and regions, and geospatial Internet of Things and blockchain.