Friso T Schut, Thomson Hallmark, Oleg Dmytrenko, Ryan N Jackson, Chase L Beisel
{"title":"Purification and in vivo, cell-free, and in vitro characterization of CRISPR-Cas12a2.","authors":"Friso T Schut, Thomson Hallmark, Oleg Dmytrenko, Ryan N Jackson, Chase L Beisel","doi":"10.1016/bs.mie.2025.01.032","DOIUrl":null,"url":null,"abstract":"<p><p>The CRISPR-associated (Cas) nuclease Cas12a2 from Sulfuricurvum sp. PC08-66 (SuCas12a2) binds RNA targets with a complementary guide (g)RNA. Target RNA binding causes a major conformational rearrangement in Cas12a2 that activates a RuvC nuclease domain to collaterally cleave RNA, ssDNA and dsDNA, arresting growth and providing population-level immunity. Here, we report in vivo, cell-free, and in vitro methods to characterize the collateral cleavage activity of SuCas12a2 as well as a procedure for gRNA design. As part of the in vivo methods, we describe how to capture growth arrest through plasmid interference and induction of an SOS DNA damage response in the bacterium Escherichia coli. We further apply cell-free transcription-translation to affirm collateral cleavage activity triggered by an expressed RNA target. Finally, as part of the in vitro methods, we describe how to purify active nuclease and subsequently conduct biochemical cleavage assays. In total, the outlined methods should accelerate the exploration of SuCas12a2 and other related Cas nucleases, revealing new features of CRISPR biology and helping develop new CRISPR technologies for molecular diagnostics and other applications.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"712 ","pages":"143-181"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2025.01.032","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Purification and in vivo, cell-free, and in vitro characterization of CRISPR-Cas12a2.
The CRISPR-associated (Cas) nuclease Cas12a2 from Sulfuricurvum sp. PC08-66 (SuCas12a2) binds RNA targets with a complementary guide (g)RNA. Target RNA binding causes a major conformational rearrangement in Cas12a2 that activates a RuvC nuclease domain to collaterally cleave RNA, ssDNA and dsDNA, arresting growth and providing population-level immunity. Here, we report in vivo, cell-free, and in vitro methods to characterize the collateral cleavage activity of SuCas12a2 as well as a procedure for gRNA design. As part of the in vivo methods, we describe how to capture growth arrest through plasmid interference and induction of an SOS DNA damage response in the bacterium Escherichia coli. We further apply cell-free transcription-translation to affirm collateral cleavage activity triggered by an expressed RNA target. Finally, as part of the in vitro methods, we describe how to purify active nuclease and subsequently conduct biochemical cleavage assays. In total, the outlined methods should accelerate the exploration of SuCas12a2 and other related Cas nucleases, revealing new features of CRISPR biology and helping develop new CRISPR technologies for molecular diagnostics and other applications.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.