小鼠标准饮食导致感染性和非感染性结肠炎的严重程度不同。

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2025-03-24 DOI:10.1128/mbio.03302-24
Joshua E Denny, Julia N Flores, Nontokozo V Mdluli, Michael C Abt
{"title":"小鼠标准饮食导致感染性和非感染性结肠炎的严重程度不同。","authors":"Joshua E Denny, Julia N Flores, Nontokozo V Mdluli, Michael C Abt","doi":"10.1128/mbio.03302-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Clostridioides difficile</i> infects the large intestine and can result in debilitating and potentially fatal colitis. The intestinal microbiota is a major factor influencing the severity of disease following infection. Factors like diet that shape microbiota composition and function may modulate <i>C. difficile</i> colitis. Here, we report that mice fed two distinct standard mouse chows (LabDiet 5010 and LabDiet 5053) exhibited significantly different susceptibility to severe <i>C. difficile</i> infection. Both diets are grain-based with comparable profiles of macro and micronutrient composition. Diet 5010-fed mice had severe morbidity and mortality compared to Diet 5053-fed mice despite no differences in <i>C. difficile</i> colonization or toxin production. Furthermore, Diet 5053 protected mice from toxin-induced epithelial damage. This protection was microbiota-dependent as germ-free mice or mice harboring a reduced diversity microbiota fed Diet 5053 were not protected from severe infection. However, cohousing with mice harboring a complex microbiota restored the protective capacity of Diet 5053 but not Diet 5010. Metabolomic profiling revealed distinct metabolic capacities between Diet 5010- and Diet 5053-fed intestinal microbiotas. Diet 5053-mediated protection extended beyond <i>C. difficile</i> infection as Diet 5053-fed mice displayed less severe dextran sodium sulfate-induced colitis than Diet 5010-fed mice, highlighting a potentially broader capacity for Diet 5053 to limit colitis. These findings demonstrate that standard diet formulations in combination with the host microbiota can drive variability in severity of infectious and non-infectious murine colitis systems, and that diet holds therapeutic potential to limit the severity of <i>C. difficile</i> infection through modulating the functional capacity of the microbiota.IMPORTANCEDiet is a major modulator of the microbiota and intestinal health. This report finds that two different standard mouse diets starkly alter the severity of colitis observed in a pathogen-mediated (<i>Clostridioides difficile</i>) and non-infectious (dextran sodium sulfate) mouse colitis experimental systems. These findings in part explain study-to-study variability using these mouse systems to study disease. Since the gut microbiota plays a key role in intestinal homeostasis, diet-derived modulation of the microbiota is a promising avenue to control disease driven by intestinal inflammation and may represent a potential intervention strategy for at-risk patients.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0330224"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Standard mouse diets lead to differences in severity in infectious and non-infectious colitis.\",\"authors\":\"Joshua E Denny, Julia N Flores, Nontokozo V Mdluli, Michael C Abt\",\"doi\":\"10.1128/mbio.03302-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Clostridioides difficile</i> infects the large intestine and can result in debilitating and potentially fatal colitis. The intestinal microbiota is a major factor influencing the severity of disease following infection. Factors like diet that shape microbiota composition and function may modulate <i>C. difficile</i> colitis. Here, we report that mice fed two distinct standard mouse chows (LabDiet 5010 and LabDiet 5053) exhibited significantly different susceptibility to severe <i>C. difficile</i> infection. Both diets are grain-based with comparable profiles of macro and micronutrient composition. Diet 5010-fed mice had severe morbidity and mortality compared to Diet 5053-fed mice despite no differences in <i>C. difficile</i> colonization or toxin production. Furthermore, Diet 5053 protected mice from toxin-induced epithelial damage. This protection was microbiota-dependent as germ-free mice or mice harboring a reduced diversity microbiota fed Diet 5053 were not protected from severe infection. However, cohousing with mice harboring a complex microbiota restored the protective capacity of Diet 5053 but not Diet 5010. Metabolomic profiling revealed distinct metabolic capacities between Diet 5010- and Diet 5053-fed intestinal microbiotas. Diet 5053-mediated protection extended beyond <i>C. difficile</i> infection as Diet 5053-fed mice displayed less severe dextran sodium sulfate-induced colitis than Diet 5010-fed mice, highlighting a potentially broader capacity for Diet 5053 to limit colitis. These findings demonstrate that standard diet formulations in combination with the host microbiota can drive variability in severity of infectious and non-infectious murine colitis systems, and that diet holds therapeutic potential to limit the severity of <i>C. difficile</i> infection through modulating the functional capacity of the microbiota.IMPORTANCEDiet is a major modulator of the microbiota and intestinal health. This report finds that two different standard mouse diets starkly alter the severity of colitis observed in a pathogen-mediated (<i>Clostridioides difficile</i>) and non-infectious (dextran sodium sulfate) mouse colitis experimental systems. These findings in part explain study-to-study variability using these mouse systems to study disease. Since the gut microbiota plays a key role in intestinal homeostasis, diet-derived modulation of the microbiota is a promising avenue to control disease driven by intestinal inflammation and may represent a potential intervention strategy for at-risk patients.</p>\",\"PeriodicalId\":18315,\"journal\":{\"name\":\"mBio\",\"volume\":\" \",\"pages\":\"e0330224\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mBio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mbio.03302-24\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.03302-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Standard mouse diets lead to differences in severity in infectious and non-infectious colitis.

Clostridioides difficile infects the large intestine and can result in debilitating and potentially fatal colitis. The intestinal microbiota is a major factor influencing the severity of disease following infection. Factors like diet that shape microbiota composition and function may modulate C. difficile colitis. Here, we report that mice fed two distinct standard mouse chows (LabDiet 5010 and LabDiet 5053) exhibited significantly different susceptibility to severe C. difficile infection. Both diets are grain-based with comparable profiles of macro and micronutrient composition. Diet 5010-fed mice had severe morbidity and mortality compared to Diet 5053-fed mice despite no differences in C. difficile colonization or toxin production. Furthermore, Diet 5053 protected mice from toxin-induced epithelial damage. This protection was microbiota-dependent as germ-free mice or mice harboring a reduced diversity microbiota fed Diet 5053 were not protected from severe infection. However, cohousing with mice harboring a complex microbiota restored the protective capacity of Diet 5053 but not Diet 5010. Metabolomic profiling revealed distinct metabolic capacities between Diet 5010- and Diet 5053-fed intestinal microbiotas. Diet 5053-mediated protection extended beyond C. difficile infection as Diet 5053-fed mice displayed less severe dextran sodium sulfate-induced colitis than Diet 5010-fed mice, highlighting a potentially broader capacity for Diet 5053 to limit colitis. These findings demonstrate that standard diet formulations in combination with the host microbiota can drive variability in severity of infectious and non-infectious murine colitis systems, and that diet holds therapeutic potential to limit the severity of C. difficile infection through modulating the functional capacity of the microbiota.IMPORTANCEDiet is a major modulator of the microbiota and intestinal health. This report finds that two different standard mouse diets starkly alter the severity of colitis observed in a pathogen-mediated (Clostridioides difficile) and non-infectious (dextran sodium sulfate) mouse colitis experimental systems. These findings in part explain study-to-study variability using these mouse systems to study disease. Since the gut microbiota plays a key role in intestinal homeostasis, diet-derived modulation of the microbiota is a promising avenue to control disease driven by intestinal inflammation and may represent a potential intervention strategy for at-risk patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信