{"title":"一种关键子图连通性驱动的图神经网络可解释性策略。","authors":"L.N. Dai , D.H. Xu , Y.F. Gao","doi":"10.1016/j.jbi.2025.104813","DOIUrl":null,"url":null,"abstract":"<div><div>Current explainability strategies for Graph Neural Networks (GNNs) often focus on individual nodes or edges, neglecting the significance of key subgraphs in decision-making processes. This limitation can result in dispersed and less reliable explanatory outcomes, particularly for complex tasks. This paper proposes a key subgraph retrieval method based on Euclidean distance, leveraging node representations obtained through training on the BA3 and Mutagenicity datasets to interpret GNN decisions. The proposed method achieves accuracies of 99.25% and 82.40% on the respective datasets. Performance comparison experiments with other mainstream explainability strategies, along with visualization analyses, demonstrate the effectiveness and robustness of this approach.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"165 ","pages":"Article 104813"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A graph neural network explainability strategy driven by key subgraph connectivity\",\"authors\":\"L.N. Dai , D.H. Xu , Y.F. Gao\",\"doi\":\"10.1016/j.jbi.2025.104813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Current explainability strategies for Graph Neural Networks (GNNs) often focus on individual nodes or edges, neglecting the significance of key subgraphs in decision-making processes. This limitation can result in dispersed and less reliable explanatory outcomes, particularly for complex tasks. This paper proposes a key subgraph retrieval method based on Euclidean distance, leveraging node representations obtained through training on the BA3 and Mutagenicity datasets to interpret GNN decisions. The proposed method achieves accuracies of 99.25% and 82.40% on the respective datasets. Performance comparison experiments with other mainstream explainability strategies, along with visualization analyses, demonstrate the effectiveness and robustness of this approach.</div></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"165 \",\"pages\":\"Article 104813\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046425000425\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000425","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A graph neural network explainability strategy driven by key subgraph connectivity
Current explainability strategies for Graph Neural Networks (GNNs) often focus on individual nodes or edges, neglecting the significance of key subgraphs in decision-making processes. This limitation can result in dispersed and less reliable explanatory outcomes, particularly for complex tasks. This paper proposes a key subgraph retrieval method based on Euclidean distance, leveraging node representations obtained through training on the BA3 and Mutagenicity datasets to interpret GNN decisions. The proposed method achieves accuracies of 99.25% and 82.40% on the respective datasets. Performance comparison experiments with other mainstream explainability strategies, along with visualization analyses, demonstrate the effectiveness and robustness of this approach.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.