{"title":"新一代测序中缺失数据对θ w $$ {\\theta}_w $$和Tajima's D $$ D $$估计偏差的校正","authors":"Nick Bailey, Laurie Stevison, Kieran Samuk","doi":"10.1111/1755-0998.14104","DOIUrl":null,"url":null,"abstract":"<p><p>Population genetic analyses use information from the site frequency spectrum to infer evolutionary processes. Two summary statistics, Watterson's estimator ( <math> <semantics> <mrow><msub><mi>θ</mi> <mi>w</mi></msub> </mrow> <annotation>$$ {\\theta}_w $$</annotation></semantics> </math> ) of genetic diversity, and Tajima's <math> <semantics><mrow><mi>D</mi></mrow> <annotation>$$ D $$</annotation></semantics> </math> , used for detecting non-neutral evolution, are among the most frequently computed statistics utilising this information. However, missing information in genomic data, particularly as encoded in the Variant Call Format (VCF), can bias these estimates, leading to incorrect evolutionary inferences. We assessed the impact of missing data on the estimation of these statistics using various population genetic software packages (VCFtools, PopGenome, pegas and scikit-allel). By simulating neutral genomic data with varying levels of missing genotypes and sites, we found consistent underestimation of <math> <semantics> <mrow><msub><mi>θ</mi> <mi>w</mi></msub> </mrow> <annotation>$$ {\\theta}_w $$</annotation></semantics> </math> across programs. We found a consequent bias in estimates of Tajima's <math> <semantics><mrow><mi>D</mi></mrow> <annotation>$$ D $$</annotation></semantics> </math> , though the direction varied by software. We developed and implemented correction methods as functions in an update of the popular pixy software, significantly reducing these biases. Our findings highlight the need for accurate data handling in population genomics to avoid misinterpretations of evolutionary phenomena.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":" ","pages":"e14104"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Correcting for Bias in Estimates of <ns0:math> <ns0:semantics> <ns0:mrow><ns0:msub><ns0:mi>θ</ns0:mi> <ns0:mi>w</ns0:mi></ns0:msub> </ns0:mrow> <ns0:annotation>$$ {\\\\theta}_w $$</ns0:annotation></ns0:semantics> </ns0:math> and Tajima's <ns0:math> <ns0:semantics><ns0:mrow><ns0:mi>D</ns0:mi></ns0:mrow> <ns0:annotation>$$ D $$</ns0:annotation></ns0:semantics> </ns0:math> From Missing Data in Next-Generation Sequencing.\",\"authors\":\"Nick Bailey, Laurie Stevison, Kieran Samuk\",\"doi\":\"10.1111/1755-0998.14104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Population genetic analyses use information from the site frequency spectrum to infer evolutionary processes. Two summary statistics, Watterson's estimator ( <math> <semantics> <mrow><msub><mi>θ</mi> <mi>w</mi></msub> </mrow> <annotation>$$ {\\\\theta}_w $$</annotation></semantics> </math> ) of genetic diversity, and Tajima's <math> <semantics><mrow><mi>D</mi></mrow> <annotation>$$ D $$</annotation></semantics> </math> , used for detecting non-neutral evolution, are among the most frequently computed statistics utilising this information. However, missing information in genomic data, particularly as encoded in the Variant Call Format (VCF), can bias these estimates, leading to incorrect evolutionary inferences. We assessed the impact of missing data on the estimation of these statistics using various population genetic software packages (VCFtools, PopGenome, pegas and scikit-allel). By simulating neutral genomic data with varying levels of missing genotypes and sites, we found consistent underestimation of <math> <semantics> <mrow><msub><mi>θ</mi> <mi>w</mi></msub> </mrow> <annotation>$$ {\\\\theta}_w $$</annotation></semantics> </math> across programs. We found a consequent bias in estimates of Tajima's <math> <semantics><mrow><mi>D</mi></mrow> <annotation>$$ D $$</annotation></semantics> </math> , though the direction varied by software. We developed and implemented correction methods as functions in an update of the popular pixy software, significantly reducing these biases. Our findings highlight the need for accurate data handling in population genomics to avoid misinterpretations of evolutionary phenomena.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\" \",\"pages\":\"e14104\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1755-0998.14104\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1755-0998.14104","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
群体遗传分析使用来自位点频谱的信息来推断进化过程。遗传多样性的Watterson估计量(θ w $$ {\theta}_w $$)和用于检测非中性进化的Tajima的D $$ D $$这两个概要统计量是利用这一信息最常计算的统计量。然而,基因组数据中缺失的信息,特别是以变异呼叫格式(VCF)编码的信息,可能会使这些估计产生偏差,导致不正确的进化推断。我们使用不同的群体遗传软件包(VCFtools, PopGenome, pegas和scikit-列)评估了缺失数据对这些统计估计的影响。通过模拟具有不同缺失水平的基因型和位点的中性基因组数据,我们发现不同程序对θ w $$ {\theta}_w $$的一致低估。我们发现对田岛D $$ D $$的估计存在相应的偏差,尽管方向因软件而异。我们在流行的pixy软件的更新中开发并实现了校正方法,大大减少了这些偏差。我们的发现强调了在种群基因组学中需要精确的数据处理,以避免对进化现象的误解。
Correcting for Bias in Estimates of θw$$ {\theta}_w $$ and Tajima's D$$ D $$ From Missing Data in Next-Generation Sequencing.
Population genetic analyses use information from the site frequency spectrum to infer evolutionary processes. Two summary statistics, Watterson's estimator ( ) of genetic diversity, and Tajima's , used for detecting non-neutral evolution, are among the most frequently computed statistics utilising this information. However, missing information in genomic data, particularly as encoded in the Variant Call Format (VCF), can bias these estimates, leading to incorrect evolutionary inferences. We assessed the impact of missing data on the estimation of these statistics using various population genetic software packages (VCFtools, PopGenome, pegas and scikit-allel). By simulating neutral genomic data with varying levels of missing genotypes and sites, we found consistent underestimation of across programs. We found a consequent bias in estimates of Tajima's , though the direction varied by software. We developed and implemented correction methods as functions in an update of the popular pixy software, significantly reducing these biases. Our findings highlight the need for accurate data handling in population genomics to avoid misinterpretations of evolutionary phenomena.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.