5G通信系统中毫米波网络信道状态信息的增强合成生成

IF 0.9 Q4 TELECOMMUNICATIONS
K. C. Sriharipriya, J. Christopher Clement, Gerardine Immaculate Mary, Chandrasekharan Natraj, R. Tharun Kumar, R. Gokul
{"title":"5G通信系统中毫米波网络信道状态信息的增强合成生成","authors":"K. C. Sriharipriya,&nbsp;J. Christopher Clement,&nbsp;Gerardine Immaculate Mary,&nbsp;Chandrasekharan Natraj,&nbsp;R. Tharun Kumar,&nbsp;R. Gokul","doi":"10.1002/itl2.577","DOIUrl":null,"url":null,"abstract":"<p>In 5G communication systems, millimeter-wave networks are pivotal, relying heavily on Channel State Information (CSI) for effective user-to-base station (BS) transmission. However, the acquisition of genuine CSI data remains a hurdle, often due to the expenses associated with simulations or physical experiments. This paper introduces an innovative method for generating artificial CSI data from real datasets, aiming to closely replicate authentic CSI samples. The procedure begins with an initial clustering analysis, followed using Principal Component Analysis and Uniform Manifold Approximation and Projection to reduce dimensionality. Then, the data distributions are transformed into multivariate normal distributions using Probability Integral Transformations (PIT). For data synthesis, Multilayer Perceptron based regression models are utilized, followed by inverse PIT transformations to return the data to its original space. Our method is compared against KDE-based algorithms, demonstrating superior fidelity in reproducing real CSI samples. Additionally, we stress the importance of capturing CSI correlations among different BSs to refine data synthesis. This research propels forward data synthesis techniques, offering potential solutions for mitigating interference challenges in dense MMW networks and advancing 5G communication systems.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced synthetic generation of channel state information for millimeter-wave networks in 5G communication systems\",\"authors\":\"K. C. Sriharipriya,&nbsp;J. Christopher Clement,&nbsp;Gerardine Immaculate Mary,&nbsp;Chandrasekharan Natraj,&nbsp;R. Tharun Kumar,&nbsp;R. Gokul\",\"doi\":\"10.1002/itl2.577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 5G communication systems, millimeter-wave networks are pivotal, relying heavily on Channel State Information (CSI) for effective user-to-base station (BS) transmission. However, the acquisition of genuine CSI data remains a hurdle, often due to the expenses associated with simulations or physical experiments. This paper introduces an innovative method for generating artificial CSI data from real datasets, aiming to closely replicate authentic CSI samples. The procedure begins with an initial clustering analysis, followed using Principal Component Analysis and Uniform Manifold Approximation and Projection to reduce dimensionality. Then, the data distributions are transformed into multivariate normal distributions using Probability Integral Transformations (PIT). For data synthesis, Multilayer Perceptron based regression models are utilized, followed by inverse PIT transformations to return the data to its original space. Our method is compared against KDE-based algorithms, demonstrating superior fidelity in reproducing real CSI samples. Additionally, we stress the importance of capturing CSI correlations among different BSs to refine data synthesis. This research propels forward data synthesis techniques, offering potential solutions for mitigating interference challenges in dense MMW networks and advancing 5G communication systems.</p>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在5G通信系统中,毫米波网络至关重要,它严重依赖信道状态信息(CSI)来实现有效的用户到基站(BS)传输。然而,获取真实的CSI数据仍然是一个障碍,通常是由于与模拟或物理实验相关的费用。本文介绍了一种从真实数据集生成人工CSI数据的创新方法,旨在紧密复制真实的CSI样本。该过程从初始聚类分析开始,然后使用主成分分析和均匀流形逼近和投影来降低维数。然后,利用概率积分变换(PIT)将数据分布转化为多元正态分布。对于数据合成,使用基于多层感知机的回归模型,然后进行逆PIT变换将数据返回到原始空间。我们的方法与基于kde的算法进行了比较,证明了再现真实CSI样本的卓越保真度。此外,我们强调了捕获不同BSs之间CSI相关性以改进数据合成的重要性。这项研究推动了数据合成技术的发展,为减轻密集毫米波网络中的干扰挑战和推进5G通信系统提供了潜在的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced synthetic generation of channel state information for millimeter-wave networks in 5G communication systems

In 5G communication systems, millimeter-wave networks are pivotal, relying heavily on Channel State Information (CSI) for effective user-to-base station (BS) transmission. However, the acquisition of genuine CSI data remains a hurdle, often due to the expenses associated with simulations or physical experiments. This paper introduces an innovative method for generating artificial CSI data from real datasets, aiming to closely replicate authentic CSI samples. The procedure begins with an initial clustering analysis, followed using Principal Component Analysis and Uniform Manifold Approximation and Projection to reduce dimensionality. Then, the data distributions are transformed into multivariate normal distributions using Probability Integral Transformations (PIT). For data synthesis, Multilayer Perceptron based regression models are utilized, followed by inverse PIT transformations to return the data to its original space. Our method is compared against KDE-based algorithms, demonstrating superior fidelity in reproducing real CSI samples. Additionally, we stress the importance of capturing CSI correlations among different BSs to refine data synthesis. This research propels forward data synthesis techniques, offering potential solutions for mitigating interference challenges in dense MMW networks and advancing 5G communication systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信