用剪切法计算分子内氢键能量:ω-X-1-烷醇,X(CH2)nOH的例子

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC
Robert E. Rosenberg
{"title":"用剪切法计算分子内氢键能量:ω-X-1-烷醇,X(CH2)nOH的例子","authors":"Robert E. Rosenberg","doi":"10.1002/poc.70011","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Although the energies of intermolecular hydrogen bonds, E<sub>HB</sub>, can be ascertained by a variety of approaches, there is not a general method to accurately determine the energies for intramolecular hydrogen bonds, E<sub>IMHB</sub>. Structures for compounds X(CH<sub>2</sub>)<sub>n</sub>OH {X = F, OH, NH<sub>2</sub>, Cl, Br, SH; <i>n</i> = 4–5} are calculated and then “clipped” to form complexes CH<sub>3</sub>CH<sub>2</sub>X•CH<sub>3</sub>CH<sub>2</sub>OH such that the critical geometric, spectroscopic, and electron density features are preserved. The E<sub>IMHB</sub> of the parent molecule is assumed to equal the E<sub>HB</sub> of the complex. Of the previous methods of determining E<sub>IMHB</sub>, the molecular tailoring approach (MTA) comes closest to the values from this work with the differences due to incomplete cancellation of conformational effects in the MTA. In general, parametric methods fare poorly, only being effective for groups of similar molecules. The <i>cis</i>–<i>trans</i> and isodesmic approaches are of limited value for longer carbon chains due to conformational strain.</p>\n </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation of the Energy of Intramolecular Hydrogen Bonds Using the Clipping Method: The Case of ω-X-1-Alkanols, X(CH2)nOH\",\"authors\":\"Robert E. Rosenberg\",\"doi\":\"10.1002/poc.70011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Although the energies of intermolecular hydrogen bonds, E<sub>HB</sub>, can be ascertained by a variety of approaches, there is not a general method to accurately determine the energies for intramolecular hydrogen bonds, E<sub>IMHB</sub>. Structures for compounds X(CH<sub>2</sub>)<sub>n</sub>OH {X = F, OH, NH<sub>2</sub>, Cl, Br, SH; <i>n</i> = 4–5} are calculated and then “clipped” to form complexes CH<sub>3</sub>CH<sub>2</sub>X•CH<sub>3</sub>CH<sub>2</sub>OH such that the critical geometric, spectroscopic, and electron density features are preserved. The E<sub>IMHB</sub> of the parent molecule is assumed to equal the E<sub>HB</sub> of the complex. Of the previous methods of determining E<sub>IMHB</sub>, the molecular tailoring approach (MTA) comes closest to the values from this work with the differences due to incomplete cancellation of conformational effects in the MTA. In general, parametric methods fare poorly, only being effective for groups of similar molecules. The <i>cis</i>–<i>trans</i> and isodesmic approaches are of limited value for longer carbon chains due to conformational strain.</p>\\n </div>\",\"PeriodicalId\":16829,\"journal\":{\"name\":\"Journal of Physical Organic Chemistry\",\"volume\":\"38 5\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/poc.70011\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.70011","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

虽然分子间氢键(EHB)的能量可以通过多种方法确定,但分子内氢键(EIMHB)的能量却没有一种通用的方法来准确确定。化合物X(CH2)nOH {X = F, OH, NH2, Cl, Br, SH的结构计算n = 4-5},然后“裁剪”形成配合物CH3CH2X•CH3CH2OH,从而保留了关键的几何、光谱和电子密度特征。假设母体分子的EIMHB等于复合物的EIMHB。在以前测定EIMHB的方法中,分子裁剪方法(MTA)最接近这项工作的值,其差异是由于MTA中的构象效应不完全抵消。一般来说,参数化方法效果很差,只对相似分子群有效。由于构象应变的原因,顺反和等径方法对较长碳链的应用价值有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Calculation of the Energy of Intramolecular Hydrogen Bonds Using the Clipping Method: The Case of ω-X-1-Alkanols, X(CH2)nOH

Calculation of the Energy of Intramolecular Hydrogen Bonds Using the Clipping Method: The Case of ω-X-1-Alkanols, X(CH2)nOH

Although the energies of intermolecular hydrogen bonds, EHB, can be ascertained by a variety of approaches, there is not a general method to accurately determine the energies for intramolecular hydrogen bonds, EIMHB. Structures for compounds X(CH2)nOH {X = F, OH, NH2, Cl, Br, SH; n = 4–5} are calculated and then “clipped” to form complexes CH3CH2X•CH3CH2OH such that the critical geometric, spectroscopic, and electron density features are preserved. The EIMHB of the parent molecule is assumed to equal the EHB of the complex. Of the previous methods of determining EIMHB, the molecular tailoring approach (MTA) comes closest to the values from this work with the differences due to incomplete cancellation of conformational effects in the MTA. In general, parametric methods fare poorly, only being effective for groups of similar molecules. The cistrans and isodesmic approaches are of limited value for longer carbon chains due to conformational strain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
11.10%
发文量
161
审稿时长
2.3 months
期刊介绍: The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信