Yang yang, Chenlu Li, Ziwang Lu, Xiantong Cao, Qifei Wu
{"title":"METTL3 介导的 m6A 修饰促进 miR-221-3p 表达,加剧缺血/再灌注诱发的急性肺损伤","authors":"Yang yang, Chenlu Li, Ziwang Lu, Xiantong Cao, Qifei Wu","doi":"10.1002/jbt.70235","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Ischemia/reperfusion (I/R)-induced acute lung injury (ALI) represents a prevalent pulmonary pathology. The N6-methyladenosine (m6A) RNA modification is integral in regulating numerous biological processes across various human diseases through the modulation of gene expression. Nevertheless, the precise role and underlying molecular mechanisms of m6A modifications in ALI remain inadequately understood. This study aimed to elucidate the impact of RNA methyltransferase 3 (METTL3)-mediated m6A modification of miR-221-3p on the progression of I/R-induced ALI. Our initial findings demonstrated an upregulation of m6A levels and METTL3 expression in I/R-induced ALI in murine models and hypoxia/reoxygenation (H/R)-induced murine lung epithelial (MLE)-12 cells. Inhibition of METTL3 was observed to reverse H/R-induced apoptotic cell death, oxidative stress, and inflammatory cytokine secretion. Furthermore, METTL3 was found to enhance the expression of miR-221-3p in an m6A-dependent manner, thereby contributing to ALI pathogenesis. In addition, miR-221-3p was shown to negatively regulate PTEN expression, while METTL3 facilitated phosphorylated AKT expression via the miR-221-3p/PTEN axis. Functional experiments further revealed that the downregulation of PTEN negated the inhibitory effects of METTL3 knockdown in H/R-treated MLE-12 cells. In conclusion, our study demonstrates that the METTL3-mediated m6A modification of miR-221-3p exacerbates ALI through modulation of the PTEN/AKT pathway. Therapeutic strategies aimed at targeting the METTL3/m6A/miR-221-3p/PTEN/AKT axis may offer a promising approach to mitigate I/R-induced ALI.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"METTL3-mediated m6A Modification Promotes miR-221-3p Expression to Exacerbate Ischemia/Reperfusion-Induced Acute Lung Injury\",\"authors\":\"Yang yang, Chenlu Li, Ziwang Lu, Xiantong Cao, Qifei Wu\",\"doi\":\"10.1002/jbt.70235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Ischemia/reperfusion (I/R)-induced acute lung injury (ALI) represents a prevalent pulmonary pathology. The N6-methyladenosine (m6A) RNA modification is integral in regulating numerous biological processes across various human diseases through the modulation of gene expression. Nevertheless, the precise role and underlying molecular mechanisms of m6A modifications in ALI remain inadequately understood. This study aimed to elucidate the impact of RNA methyltransferase 3 (METTL3)-mediated m6A modification of miR-221-3p on the progression of I/R-induced ALI. Our initial findings demonstrated an upregulation of m6A levels and METTL3 expression in I/R-induced ALI in murine models and hypoxia/reoxygenation (H/R)-induced murine lung epithelial (MLE)-12 cells. Inhibition of METTL3 was observed to reverse H/R-induced apoptotic cell death, oxidative stress, and inflammatory cytokine secretion. Furthermore, METTL3 was found to enhance the expression of miR-221-3p in an m6A-dependent manner, thereby contributing to ALI pathogenesis. In addition, miR-221-3p was shown to negatively regulate PTEN expression, while METTL3 facilitated phosphorylated AKT expression via the miR-221-3p/PTEN axis. Functional experiments further revealed that the downregulation of PTEN negated the inhibitory effects of METTL3 knockdown in H/R-treated MLE-12 cells. In conclusion, our study demonstrates that the METTL3-mediated m6A modification of miR-221-3p exacerbates ALI through modulation of the PTEN/AKT pathway. Therapeutic strategies aimed at targeting the METTL3/m6A/miR-221-3p/PTEN/AKT axis may offer a promising approach to mitigate I/R-induced ALI.</p></div>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 4\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70235\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70235","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ischemia/reperfusion (I/R)-induced acute lung injury (ALI) represents a prevalent pulmonary pathology. The N6-methyladenosine (m6A) RNA modification is integral in regulating numerous biological processes across various human diseases through the modulation of gene expression. Nevertheless, the precise role and underlying molecular mechanisms of m6A modifications in ALI remain inadequately understood. This study aimed to elucidate the impact of RNA methyltransferase 3 (METTL3)-mediated m6A modification of miR-221-3p on the progression of I/R-induced ALI. Our initial findings demonstrated an upregulation of m6A levels and METTL3 expression in I/R-induced ALI in murine models and hypoxia/reoxygenation (H/R)-induced murine lung epithelial (MLE)-12 cells. Inhibition of METTL3 was observed to reverse H/R-induced apoptotic cell death, oxidative stress, and inflammatory cytokine secretion. Furthermore, METTL3 was found to enhance the expression of miR-221-3p in an m6A-dependent manner, thereby contributing to ALI pathogenesis. In addition, miR-221-3p was shown to negatively regulate PTEN expression, while METTL3 facilitated phosphorylated AKT expression via the miR-221-3p/PTEN axis. Functional experiments further revealed that the downregulation of PTEN negated the inhibitory effects of METTL3 knockdown in H/R-treated MLE-12 cells. In conclusion, our study demonstrates that the METTL3-mediated m6A modification of miR-221-3p exacerbates ALI through modulation of the PTEN/AKT pathway. Therapeutic strategies aimed at targeting the METTL3/m6A/miR-221-3p/PTEN/AKT axis may offer a promising approach to mitigate I/R-induced ALI.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.