Shuoyan Tan, Zhenglu Chen, Ruiqiang Lu, Huanxiang Liu, Xiaojun Yao
{"title":"分子建模和机器学习驱动的合理蛋白质分解靶向嵌合体设计","authors":"Shuoyan Tan, Zhenglu Chen, Ruiqiang Lu, Huanxiang Liu, Xiaojun Yao","doi":"10.1002/wcms.70013","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Proteolysis targeting chimera (PROTAC) induces specific protein degradation through the ubiquitin–proteasome system and offers significant advantages over small molecule drugs. They are emerging as a promising avenue, particularly in targeting previously “undruggable” targets. Traditional PROTACs have been discovered through large-scale experimental screening. Extensive research efforts have been focused on unraveling the biological and pharmacological functions of PROTACs, with significant strides made toward transitioning from empirical discovery to rational, structure-based design strategies. This review provides an overview of recent representative computer-aided drug design studies focused on PROTACs. We highlight how the utilization of the targeted protein degradation database, molecular modeling techniques, machine learning algorithms, and computational methods contributes to facilitating PROTAC discovery. Furthermore, we conclude the achievements in the PROTAC field and explore challenges and future directions. We aim to offer insights and references for future computational studies and the rational design of PROTACs.</p>\n </div>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 2","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Proteolysis Targeting Chimera Design Driven by Molecular Modeling and Machine Learning\",\"authors\":\"Shuoyan Tan, Zhenglu Chen, Ruiqiang Lu, Huanxiang Liu, Xiaojun Yao\",\"doi\":\"10.1002/wcms.70013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Proteolysis targeting chimera (PROTAC) induces specific protein degradation through the ubiquitin–proteasome system and offers significant advantages over small molecule drugs. They are emerging as a promising avenue, particularly in targeting previously “undruggable” targets. Traditional PROTACs have been discovered through large-scale experimental screening. Extensive research efforts have been focused on unraveling the biological and pharmacological functions of PROTACs, with significant strides made toward transitioning from empirical discovery to rational, structure-based design strategies. This review provides an overview of recent representative computer-aided drug design studies focused on PROTACs. We highlight how the utilization of the targeted protein degradation database, molecular modeling techniques, machine learning algorithms, and computational methods contributes to facilitating PROTAC discovery. Furthermore, we conclude the achievements in the PROTAC field and explore challenges and future directions. We aim to offer insights and references for future computational studies and the rational design of PROTACs.</p>\\n </div>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/wcms.70013\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.70013","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Rational Proteolysis Targeting Chimera Design Driven by Molecular Modeling and Machine Learning
Proteolysis targeting chimera (PROTAC) induces specific protein degradation through the ubiquitin–proteasome system and offers significant advantages over small molecule drugs. They are emerging as a promising avenue, particularly in targeting previously “undruggable” targets. Traditional PROTACs have been discovered through large-scale experimental screening. Extensive research efforts have been focused on unraveling the biological and pharmacological functions of PROTACs, with significant strides made toward transitioning from empirical discovery to rational, structure-based design strategies. This review provides an overview of recent representative computer-aided drug design studies focused on PROTACs. We highlight how the utilization of the targeted protein degradation database, molecular modeling techniques, machine learning algorithms, and computational methods contributes to facilitating PROTAC discovery. Furthermore, we conclude the achievements in the PROTAC field and explore challenges and future directions. We aim to offer insights and references for future computational studies and the rational design of PROTACs.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.