Hyesook Yoon, Erin M. Triplet, Lincoln Wurtz, Whitney L. Simon, Chan-Il Choi, Isobel A. Scarisbrick
{"title":"蛋白酶激活受体 1 对中枢神经系统脂质的调控","authors":"Hyesook Yoon, Erin M. Triplet, Lincoln Wurtz, Whitney L. Simon, Chan-Il Choi, Isobel A. Scarisbrick","doi":"10.1111/jnc.70047","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Disruptions in the metabolism of cholesterol and other lipids are strongly implicated in the pathogenesis of neurological disease. The CNS is highly enriched in cholesterol, which is primarily synthesized <i>de novo</i>. Cholesterol synthesis is also rate limiting for myelin regeneration. Given that knockout of the thrombin receptor (Protease Activated Receptor 1 (PAR1)) accelerates myelin regeneration, here we sought to determine the potential regulatory actions of PAR1 in CNS cholesterol and lipid metabolism in the intact adult CNS and during myelin regeneration. We present quantitative PCR and RNAseq evidence from murine spinal cords at the peak of myelination and in adulthood showing PAR1 knockout is associated with increased gene expression for cholesterol biosynthesis (Hmgcs1, Hmgcr, Sqle, and Dhcr7), lipid transport (ApoE, Abca1, and Ldlr), and intracellular processing (Lcat, Npc1, and Npc2) at one or more time points examined. An upregulation of genes involved in the synthesis of other lipids enriched in the myelin membrane, specifically Fa2h, Ugt8a, and Gal3st1, was also observed in PAR1 knockouts. Transcription factors essential for lipid and cholesterol production (Srebf1 and Srebf2) were also increased in PAR1 knockout spinal cords at the postnatal day 21 peak of myelination and at day 45. GC–MS and LC–MS quantification of lipids demonstrated coordinate increases in the abundance of select cholesterol and lipid species in the spinal cords of PAR1 knockout mice, including enrichment of esterified cholesterol, together with sphingomyelins and sphingolipids. Co-localization of the SREBP1 and SREBP2 transcription factors, as well as HMGCS1, a rate-limiting enzyme in cholesterol biosynthesis, to glia during remyelination post-lysolecithin or cuprizone-mediated demyelination showed a prominent regulatory role for PAR1 in Olig2+ oligodendrocytes. PAR1 knockouts also demonstrated elevated levels of SREBP2 in more mature GST3+ oligodendrocytes and SREBP1 in GFAP+ astrocytes during remyelination post-lysolecithin. These findings demonstrate novel roles for PAR1 as a regulator of CNS cholesterol and lipid metabolism and its potential as a therapeutic target to increase cholesterol availability to improve myelin regeneration.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>\n </div>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of CNS Lipids by Protease Activated Receptor 1\",\"authors\":\"Hyesook Yoon, Erin M. Triplet, Lincoln Wurtz, Whitney L. Simon, Chan-Il Choi, Isobel A. Scarisbrick\",\"doi\":\"10.1111/jnc.70047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Disruptions in the metabolism of cholesterol and other lipids are strongly implicated in the pathogenesis of neurological disease. The CNS is highly enriched in cholesterol, which is primarily synthesized <i>de novo</i>. Cholesterol synthesis is also rate limiting for myelin regeneration. Given that knockout of the thrombin receptor (Protease Activated Receptor 1 (PAR1)) accelerates myelin regeneration, here we sought to determine the potential regulatory actions of PAR1 in CNS cholesterol and lipid metabolism in the intact adult CNS and during myelin regeneration. We present quantitative PCR and RNAseq evidence from murine spinal cords at the peak of myelination and in adulthood showing PAR1 knockout is associated with increased gene expression for cholesterol biosynthesis (Hmgcs1, Hmgcr, Sqle, and Dhcr7), lipid transport (ApoE, Abca1, and Ldlr), and intracellular processing (Lcat, Npc1, and Npc2) at one or more time points examined. An upregulation of genes involved in the synthesis of other lipids enriched in the myelin membrane, specifically Fa2h, Ugt8a, and Gal3st1, was also observed in PAR1 knockouts. Transcription factors essential for lipid and cholesterol production (Srebf1 and Srebf2) were also increased in PAR1 knockout spinal cords at the postnatal day 21 peak of myelination and at day 45. GC–MS and LC–MS quantification of lipids demonstrated coordinate increases in the abundance of select cholesterol and lipid species in the spinal cords of PAR1 knockout mice, including enrichment of esterified cholesterol, together with sphingomyelins and sphingolipids. Co-localization of the SREBP1 and SREBP2 transcription factors, as well as HMGCS1, a rate-limiting enzyme in cholesterol biosynthesis, to glia during remyelination post-lysolecithin or cuprizone-mediated demyelination showed a prominent regulatory role for PAR1 in Olig2+ oligodendrocytes. PAR1 knockouts also demonstrated elevated levels of SREBP2 in more mature GST3+ oligodendrocytes and SREBP1 in GFAP+ astrocytes during remyelination post-lysolecithin. These findings demonstrate novel roles for PAR1 as a regulator of CNS cholesterol and lipid metabolism and its potential as a therapeutic target to increase cholesterol availability to improve myelin regeneration.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\\n </div>\",\"PeriodicalId\":16527,\"journal\":{\"name\":\"Journal of Neurochemistry\",\"volume\":\"169 3\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70047\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70047","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Regulation of CNS Lipids by Protease Activated Receptor 1
Disruptions in the metabolism of cholesterol and other lipids are strongly implicated in the pathogenesis of neurological disease. The CNS is highly enriched in cholesterol, which is primarily synthesized de novo. Cholesterol synthesis is also rate limiting for myelin regeneration. Given that knockout of the thrombin receptor (Protease Activated Receptor 1 (PAR1)) accelerates myelin regeneration, here we sought to determine the potential regulatory actions of PAR1 in CNS cholesterol and lipid metabolism in the intact adult CNS and during myelin regeneration. We present quantitative PCR and RNAseq evidence from murine spinal cords at the peak of myelination and in adulthood showing PAR1 knockout is associated with increased gene expression for cholesterol biosynthesis (Hmgcs1, Hmgcr, Sqle, and Dhcr7), lipid transport (ApoE, Abca1, and Ldlr), and intracellular processing (Lcat, Npc1, and Npc2) at one or more time points examined. An upregulation of genes involved in the synthesis of other lipids enriched in the myelin membrane, specifically Fa2h, Ugt8a, and Gal3st1, was also observed in PAR1 knockouts. Transcription factors essential for lipid and cholesterol production (Srebf1 and Srebf2) were also increased in PAR1 knockout spinal cords at the postnatal day 21 peak of myelination and at day 45. GC–MS and LC–MS quantification of lipids demonstrated coordinate increases in the abundance of select cholesterol and lipid species in the spinal cords of PAR1 knockout mice, including enrichment of esterified cholesterol, together with sphingomyelins and sphingolipids. Co-localization of the SREBP1 and SREBP2 transcription factors, as well as HMGCS1, a rate-limiting enzyme in cholesterol biosynthesis, to glia during remyelination post-lysolecithin or cuprizone-mediated demyelination showed a prominent regulatory role for PAR1 in Olig2+ oligodendrocytes. PAR1 knockouts also demonstrated elevated levels of SREBP2 in more mature GST3+ oligodendrocytes and SREBP1 in GFAP+ astrocytes during remyelination post-lysolecithin. These findings demonstrate novel roles for PAR1 as a regulator of CNS cholesterol and lipid metabolism and its potential as a therapeutic target to increase cholesterol availability to improve myelin regeneration.
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.