预测交通管理:城市道路网络的时空分析与聚类

IF 0.9 Q4 TELECOMMUNICATIONS
Kareem K. Ibrahim, Ahmed S. Abdulreda, Ali H. Abdulkhaleq
{"title":"预测交通管理:城市道路网络的时空分析与聚类","authors":"Kareem K. Ibrahim,&nbsp;Ahmed S. Abdulreda,&nbsp;Ali H. Abdulkhaleq","doi":"10.1002/itl2.644","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Communication, smart transportation, and computer developments in recent years have significantly enhanced the potential for intelligent traffic convenience, and efficiency solutions. The importance of intelligent transportation systems (ITS) in alleviating traffic congestion in cities cannot be overstated. A poorly planned road network, high vehicle volumes, and critical congestion areas are the main causes of traffic congestion. The paper presents a congestion avoidance method based on estimating traffic congestion in real-time on urban road networks and predicting alternate shortest routes. Using threshold-based cluster head selection and modified K-means clustering formulation algorithms, the proposed system can estimate the degree of congestion on diverse roads and predict the shortest route. In order to optimize network design and dynamic route planning, the proposed approach demonstrates spatiotemporal regularities of traffic congestion. There is a greater degree of comprehensiveness and objectiveness in the research results than in the existing methods.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Traffic Management: Spatiotemporal Analysis and Clustering for Urban Road Networks\",\"authors\":\"Kareem K. Ibrahim,&nbsp;Ahmed S. Abdulreda,&nbsp;Ali H. Abdulkhaleq\",\"doi\":\"10.1002/itl2.644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Communication, smart transportation, and computer developments in recent years have significantly enhanced the potential for intelligent traffic convenience, and efficiency solutions. The importance of intelligent transportation systems (ITS) in alleviating traffic congestion in cities cannot be overstated. A poorly planned road network, high vehicle volumes, and critical congestion areas are the main causes of traffic congestion. The paper presents a congestion avoidance method based on estimating traffic congestion in real-time on urban road networks and predicting alternate shortest routes. Using threshold-based cluster head selection and modified K-means clustering formulation algorithms, the proposed system can estimate the degree of congestion on diverse roads and predict the shortest route. In order to optimize network design and dynamic route planning, the proposed approach demonstrates spatiotemporal regularities of traffic congestion. There is a greater degree of comprehensiveness and objectiveness in the research results than in the existing methods.</p>\\n </div>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,通信、智能交通和计算机的发展大大增强了智能交通便利和效率解决方案的潜力。智能交通系统(ITS)在缓解城市交通拥堵方面的重要性怎么强调都不为过。规划不周的道路网络、高车流量和严重拥堵区域是交通拥堵的主要原因。提出了一种基于实时估计城市道路网络交通拥堵和预测备用最短路径的拥堵避免方法。采用基于阈值的聚类头选择和改进的K-means聚类公式算法,该系统可以估计不同道路上的拥堵程度并预测最短路径。为了优化网络设计和动态路径规划,该方法展示了交通拥堵的时空规律。与现有方法相比,研究结果具有更大程度的全面性和客观性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Traffic Management: Spatiotemporal Analysis and Clustering for Urban Road Networks

Communication, smart transportation, and computer developments in recent years have significantly enhanced the potential for intelligent traffic convenience, and efficiency solutions. The importance of intelligent transportation systems (ITS) in alleviating traffic congestion in cities cannot be overstated. A poorly planned road network, high vehicle volumes, and critical congestion areas are the main causes of traffic congestion. The paper presents a congestion avoidance method based on estimating traffic congestion in real-time on urban road networks and predicting alternate shortest routes. Using threshold-based cluster head selection and modified K-means clustering formulation algorithms, the proposed system can estimate the degree of congestion on diverse roads and predict the shortest route. In order to optimize network design and dynamic route planning, the proposed approach demonstrates spatiotemporal regularities of traffic congestion. There is a greater degree of comprehensiveness and objectiveness in the research results than in the existing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信