加性不可分解的正定积分格

IF 0.8 3区 数学 Q2 MATHEMATICS
Ruiqing Wang
{"title":"加性不可分解的正定积分格","authors":"Ruiqing Wang","doi":"10.1007/s10114-025-2562-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we obtain some sufficient and necessary conditions for indecomposable positive definite integral lattices with discriminants 2, 3, 4 and 5 over <span>\\({\\mathbb Z}\\)</span> being additively indecomposable lattices. Using these results, we prove that there exist additively indecomposable positive integral quadratic lattices with discriminants 2, 3, 4 and 5 and rank greater than or equal to 2 but for 35 exceptions. In the exceptions there are no lattices with the desired properties. We also give a lifting theorem of additively indecomposable positive definite integral lattices.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 3","pages":"908 - 924"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additively Indecomposable Positive Definite Integral Lattices\",\"authors\":\"Ruiqing Wang\",\"doi\":\"10.1007/s10114-025-2562-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we obtain some sufficient and necessary conditions for indecomposable positive definite integral lattices with discriminants 2, 3, 4 and 5 over <span>\\\\({\\\\mathbb Z}\\\\)</span> being additively indecomposable lattices. Using these results, we prove that there exist additively indecomposable positive integral quadratic lattices with discriminants 2, 3, 4 and 5 and rank greater than or equal to 2 but for 35 exceptions. In the exceptions there are no lattices with the desired properties. We also give a lifting theorem of additively indecomposable positive definite integral lattices.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 3\",\"pages\":\"908 - 924\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-2562-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-2562-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了具有2、3、4、5在\({\mathbb Z}\)上的判别式的不可分解正定积分格是可加不可分解格的几个充要条件。利用这些结果,我们证明了除35个例外情况外,存在具有判别式为2、3、4、5且秩大于等于2的可加不可分解的正积分二次格。在例外情况下,没有晶格具有期望的性质。给出了可加不可分解正定积分格的一个提升定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Additively Indecomposable Positive Definite Integral Lattices

In this paper, we obtain some sufficient and necessary conditions for indecomposable positive definite integral lattices with discriminants 2, 3, 4 and 5 over \({\mathbb Z}\) being additively indecomposable lattices. Using these results, we prove that there exist additively indecomposable positive integral quadratic lattices with discriminants 2, 3, 4 and 5 and rank greater than or equal to 2 but for 35 exceptions. In the exceptions there are no lattices with the desired properties. We also give a lifting theorem of additively indecomposable positive definite integral lattices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信