通过热电联产、电池资源、热存储和需求方策略管理电力/热力微电网能源的新型 LSTPA 方法学

Q2 Energy
Elmira Akhavan Maroofi, Mahmoud Samiei Moghaddam, Azita Azarfar, Reza Davarzani, Mojtaba Vahedi
{"title":"通过热电联产、电池资源、热存储和需求方策略管理电力/热力微电网能源的新型 LSTPA 方法学","authors":"Elmira Akhavan Maroofi,&nbsp;Mahmoud Samiei Moghaddam,&nbsp;Azita Azarfar,&nbsp;Reza Davarzani,&nbsp;Mojtaba Vahedi","doi":"10.1186/s42162-025-00507-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a stochastic optimization model for integrated energy management in electrical and thermal microgrids, addressing uncertainties in renewable energy resources. The model optimizes the placement of combined heat and power (CHP) systems, energy storage, and demand-side management for both islanded and grid-connected operations. A multi-objective function is formulated to minimize energy losses, voltage deviations, costs, and renewable supply interruptions. The Large-Scale Two-Population Algorithm (LSTPA) is employed to solve the problem, with the IEEE 69-bus network as a case study. Results indicate that the proposed approach reduces energy losses to 3634 kWh, improves voltage stability to 0.9828 p.u., and lowers operational costs to $2845 in islanded mode. The findings demonstrate that increasing CHP units enhances system performance, reducing losses from 4280 kWh to 3634 kWh. This study offers valuable insights for policymakers and system operators in optimizing microgrid energy management while balancing efficiency, cost, and reliability. Future work will explore grid integration challenges and advanced control techniques to further optimize microgrid performance.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00507-7","citationCount":"0","resultStr":"{\"title\":\"A novel LSTPA methodology for managing energy in electrical/thermal microgrids through CHP, battery resources, thermal storage, and demand-side strategies\",\"authors\":\"Elmira Akhavan Maroofi,&nbsp;Mahmoud Samiei Moghaddam,&nbsp;Azita Azarfar,&nbsp;Reza Davarzani,&nbsp;Mojtaba Vahedi\",\"doi\":\"10.1186/s42162-025-00507-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a stochastic optimization model for integrated energy management in electrical and thermal microgrids, addressing uncertainties in renewable energy resources. The model optimizes the placement of combined heat and power (CHP) systems, energy storage, and demand-side management for both islanded and grid-connected operations. A multi-objective function is formulated to minimize energy losses, voltage deviations, costs, and renewable supply interruptions. The Large-Scale Two-Population Algorithm (LSTPA) is employed to solve the problem, with the IEEE 69-bus network as a case study. Results indicate that the proposed approach reduces energy losses to 3634 kWh, improves voltage stability to 0.9828 p.u., and lowers operational costs to $2845 in islanded mode. The findings demonstrate that increasing CHP units enhances system performance, reducing losses from 4280 kWh to 3634 kWh. This study offers valuable insights for policymakers and system operators in optimizing microgrid energy management while balancing efficiency, cost, and reliability. Future work will explore grid integration challenges and advanced control techniques to further optimize microgrid performance.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00507-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-025-00507-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00507-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel LSTPA methodology for managing energy in electrical/thermal microgrids through CHP, battery resources, thermal storage, and demand-side strategies

This paper presents a stochastic optimization model for integrated energy management in electrical and thermal microgrids, addressing uncertainties in renewable energy resources. The model optimizes the placement of combined heat and power (CHP) systems, energy storage, and demand-side management for both islanded and grid-connected operations. A multi-objective function is formulated to minimize energy losses, voltage deviations, costs, and renewable supply interruptions. The Large-Scale Two-Population Algorithm (LSTPA) is employed to solve the problem, with the IEEE 69-bus network as a case study. Results indicate that the proposed approach reduces energy losses to 3634 kWh, improves voltage stability to 0.9828 p.u., and lowers operational costs to $2845 in islanded mode. The findings demonstrate that increasing CHP units enhances system performance, reducing losses from 4280 kWh to 3634 kWh. This study offers valuable insights for policymakers and system operators in optimizing microgrid energy management while balancing efficiency, cost, and reliability. Future work will explore grid integration challenges and advanced control techniques to further optimize microgrid performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信