Nootkatone (NK)是一种葡萄柚衍生的倍半萜类物质,通过调节HaCaT细胞中的NRF2-HO-1和AhR-CYP1A1信号通路来抑制uvb诱导的损伤

IF 2.4 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY
Ye-Lim You, Hyeon-Son Choi
{"title":"Nootkatone (NK)是一种葡萄柚衍生的倍半萜类物质,通过调节HaCaT细胞中的NRF2-HO-1和AhR-CYP1A1信号通路来抑制uvb诱导的损伤","authors":"Ye-Lim You,&nbsp;Hyeon-Son Choi","doi":"10.1007/s10068-024-01791-x","DOIUrl":null,"url":null,"abstract":"<div><p>Nootkatone (NK), a sesquiterpene naturally derived from citrus species, was investigated for its protective effect against UVB-induced damage in HaCaT cells and its underlying mechanisms. NK effectively suppressed UVB-mediated cell death and significantly modulated expression of skin hydration genes; NK (100 μM) increased mRNA levels of collagen-1 and HAS by 44.6 and 34.7%, respectively, while downregulating HYAL by 46.8%. NK also reduced MMP1/2 expression, key matrix metalloproteinases, but enhanced mRNA levels of skin barrier factors, Filaggrin, Loricrin, and Involucrin by up to 45%. Additionally, NK lowered UVB-induced ROS production and elevated antioxidant levels (NRF2, HO-1, catalase, SOD1, and Gpx), and decrease the protein levels of xenobiotic factors, AhR and CYP1A1. These findings suggest that NK protects skin integrity against UVB-induced photoaging through the modulation of NRF2-HO-1 and AhR-CYP1A1 signaling pathways. NK shows promise as a functional agent, either edible or topical, for protecting against UVB-induced skin damage.</p></div>","PeriodicalId":566,"journal":{"name":"Food Science and Biotechnology","volume":"34 8","pages":"1751 - 1761"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nootkatone (NK), a grapefruit-derived sesquiterpenoid, suppresses UVB-induced damage by regulating NRF2-HO-1 and AhR-CYP1A1 signaling pathways in HaCaT cells\",\"authors\":\"Ye-Lim You,&nbsp;Hyeon-Son Choi\",\"doi\":\"10.1007/s10068-024-01791-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nootkatone (NK), a sesquiterpene naturally derived from citrus species, was investigated for its protective effect against UVB-induced damage in HaCaT cells and its underlying mechanisms. NK effectively suppressed UVB-mediated cell death and significantly modulated expression of skin hydration genes; NK (100 μM) increased mRNA levels of collagen-1 and HAS by 44.6 and 34.7%, respectively, while downregulating HYAL by 46.8%. NK also reduced MMP1/2 expression, key matrix metalloproteinases, but enhanced mRNA levels of skin barrier factors, Filaggrin, Loricrin, and Involucrin by up to 45%. Additionally, NK lowered UVB-induced ROS production and elevated antioxidant levels (NRF2, HO-1, catalase, SOD1, and Gpx), and decrease the protein levels of xenobiotic factors, AhR and CYP1A1. These findings suggest that NK protects skin integrity against UVB-induced photoaging through the modulation of NRF2-HO-1 and AhR-CYP1A1 signaling pathways. NK shows promise as a functional agent, either edible or topical, for protecting against UVB-induced skin damage.</p></div>\",\"PeriodicalId\":566,\"journal\":{\"name\":\"Food Science and Biotechnology\",\"volume\":\"34 8\",\"pages\":\"1751 - 1761\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10068-024-01791-x\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s10068-024-01791-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Nootkatone (NK)是一种天然从柑橘中提取的倍半萜,研究了其对uvb诱导的HaCaT细胞损伤的保护作用及其潜在机制。NK有效抑制uvb介导的细胞死亡,显著调节皮肤水合基因的表达;NK (100 μM)使胶原-1和HAS mRNA水平分别升高44.6%和34.7%,下调HYAL mRNA水平46.8%。NK也降低了关键基质金属蛋白酶MMP1/2的表达,但提高了皮肤屏障因子、聚丝蛋白、Loricrin和Involucrin的mRNA水平,最高可达45%。此外,NK降低了uvb诱导的ROS生成和抗氧化水平(NRF2、HO-1、过氧化氢酶、SOD1和Gpx)的升高,并降低了外生因子、AhR和CYP1A1的蛋白水平。这些发现表明NK通过调节NRF2-HO-1和AhR-CYP1A1信号通路保护皮肤免受uvb诱导的光老化。NK显示出作为一种功能性剂的希望,无论是可食用的还是外用的,都可以防止uvb引起的皮肤损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nootkatone (NK), a grapefruit-derived sesquiterpenoid, suppresses UVB-induced damage by regulating NRF2-HO-1 and AhR-CYP1A1 signaling pathways in HaCaT cells

Nootkatone (NK), a sesquiterpene naturally derived from citrus species, was investigated for its protective effect against UVB-induced damage in HaCaT cells and its underlying mechanisms. NK effectively suppressed UVB-mediated cell death and significantly modulated expression of skin hydration genes; NK (100 μM) increased mRNA levels of collagen-1 and HAS by 44.6 and 34.7%, respectively, while downregulating HYAL by 46.8%. NK also reduced MMP1/2 expression, key matrix metalloproteinases, but enhanced mRNA levels of skin barrier factors, Filaggrin, Loricrin, and Involucrin by up to 45%. Additionally, NK lowered UVB-induced ROS production and elevated antioxidant levels (NRF2, HO-1, catalase, SOD1, and Gpx), and decrease the protein levels of xenobiotic factors, AhR and CYP1A1. These findings suggest that NK protects skin integrity against UVB-induced photoaging through the modulation of NRF2-HO-1 and AhR-CYP1A1 signaling pathways. NK shows promise as a functional agent, either edible or topical, for protecting against UVB-induced skin damage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Science and Biotechnology
Food Science and Biotechnology FOOD SCIENCE & TECHNOLOGY-
CiteScore
5.40
自引率
3.40%
发文量
174
审稿时长
2.3 months
期刊介绍: The FSB journal covers food chemistry and analysis for compositional and physiological activity changes, food hygiene and toxicology, food microbiology and biotechnology, and food engineering involved in during and after food processing through physical, chemical, and biological ways. Consumer perception and sensory evaluation on processed foods are accepted only when they are relevant to the laboratory research work. As a general rule, manuscripts dealing with analysis and efficacy of extracts from natural resources prior to the processing or without any related food processing may not be considered within the scope of the journal. The FSB journal does not deal with only local interest and a lack of significant scientific merit. The main scope of our journal is seeking for human health and wellness through constructive works and new findings in food science and biotechnology field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信