具有随机系数的双目标非齐次随机线性二次系统的鲁棒最优控制

IF 4.8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Guangchen Wang , Zhuangzhuang Xing
{"title":"具有随机系数的双目标非齐次随机线性二次系统的鲁棒最优控制","authors":"Guangchen Wang ,&nbsp;Zhuangzhuang Xing","doi":"10.1016/j.automatica.2025.112234","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates a robust stochastic linear–quadratic optimal control (RSLQ) problem with non-homogeneous terms in state, where all coefficients of state and cost function are allowed to be random and the coefficients of cost function are also uncertain. The existence of a unique robust optimal control (OC) <span><math><msup><mrow><mover><mrow><mi>v</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></msup></math></span> which depends on parameter <span><math><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span> is obtained, and <span><math><mrow><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>,</mo><msup><mrow><mover><mrow><mi>v</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></msup><mo>)</mo></mrow></math></span> is verified to be a saddle point of a game problem. Then the solving of Problem RSLQ is proven to be equivalent to the seeking of a global maximum point <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> of a value function <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>λ</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> w.r.t. <span><math><mrow><mi>λ</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. Furthermore, for the case with one-dimensional state, we obtain the continuity of <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>λ</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> w.r.t. <span><math><mi>λ</mi></math></span>, which can also be seen as a stability property of value function of stochastic linear–quadratic (SLQ) problems w.r.t. parameter <span><math><mi>λ</mi></math></span>. The main challenge is the continuity dependency w.r.t. <span><math><mi>λ</mi></math></span> of solution of an auxiliary linear backward stochastic differential equation (BSDE), which has possibly unbounded coefficients and appears in the explicit form of <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>λ</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. Via the estimates of bounded mean oscillation martingales (BMO martingales) and stochastic Riccati equations (SREs), along with transformation of measures, we overcome this obstacle and derive that <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>λ</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is Lipschitz continuous w.r.t. <span><math><mi>λ</mi></math></span>. Estimates of two generalized SREs appeared in an SLQ problem with conic constraint are also obtained. Some numerical examples are given to further verify the validity of our theoretical analysis.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"176 ","pages":"Article 112234"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust optimal control of bi-objective non-homogeneous stochastic linear quadratic system with random coefficients\",\"authors\":\"Guangchen Wang ,&nbsp;Zhuangzhuang Xing\",\"doi\":\"10.1016/j.automatica.2025.112234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates a robust stochastic linear–quadratic optimal control (RSLQ) problem with non-homogeneous terms in state, where all coefficients of state and cost function are allowed to be random and the coefficients of cost function are also uncertain. The existence of a unique robust optimal control (OC) <span><math><msup><mrow><mover><mrow><mi>v</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></msup></math></span> which depends on parameter <span><math><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span> is obtained, and <span><math><mrow><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>,</mo><msup><mrow><mover><mrow><mi>v</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></msup><mo>)</mo></mrow></math></span> is verified to be a saddle point of a game problem. Then the solving of Problem RSLQ is proven to be equivalent to the seeking of a global maximum point <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> of a value function <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>λ</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> w.r.t. <span><math><mrow><mi>λ</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. Furthermore, for the case with one-dimensional state, we obtain the continuity of <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>λ</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> w.r.t. <span><math><mi>λ</mi></math></span>, which can also be seen as a stability property of value function of stochastic linear–quadratic (SLQ) problems w.r.t. parameter <span><math><mi>λ</mi></math></span>. The main challenge is the continuity dependency w.r.t. <span><math><mi>λ</mi></math></span> of solution of an auxiliary linear backward stochastic differential equation (BSDE), which has possibly unbounded coefficients and appears in the explicit form of <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>λ</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. Via the estimates of bounded mean oscillation martingales (BMO martingales) and stochastic Riccati equations (SREs), along with transformation of measures, we overcome this obstacle and derive that <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>λ</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is Lipschitz continuous w.r.t. <span><math><mi>λ</mi></math></span>. Estimates of two generalized SREs appeared in an SLQ problem with conic constraint are also obtained. Some numerical examples are given to further verify the validity of our theoretical analysis.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"176 \",\"pages\":\"Article 112234\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109825001268\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825001268","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

研究一类状态项为非齐次的鲁棒随机线性二次最优控制(RSLQ)问题,该问题允许状态系数和代价函数的系数都是随机的,并且代价函数的系数也是不确定的。得到了依赖于参数λ∗∈[0,1]的唯一鲁棒最优控制(OC) v ā λ∗的存在性,并证明了(λ∗,v ā λ∗)是一个对策问题的鞍点。然后证明了RSLQ问题的求解等价于求值函数Vλ(x) w.r.t. λ∈[0,1]的全局极大点λ∗。此外,对于一维状态,我们得到了Vλ(x) w.r.t λ的连续性,这也可以看作是随机线性二次(SLQ)问题w.r.t参数λ的值函数的稳定性。主要的挑战是一个辅助线性倒向随机微分方程(BSDE)的解的连续性依赖w.r.t. λ,它可能具有无界系数,并以Vλ(x)的显式形式出现。通过有界平均振荡鞅(BMO鞅)和随机Riccati方程(SREs)的估计,以及测度变换,我们克服了这一障碍,并推导出Vλ(x)是Lipschitz连续的w.r.t λ。得到了一类具有二次约束的SLQ问题中两个广义SREs的估计。数值算例进一步验证了理论分析的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust optimal control of bi-objective non-homogeneous stochastic linear quadratic system with random coefficients
This paper investigates a robust stochastic linear–quadratic optimal control (RSLQ) problem with non-homogeneous terms in state, where all coefficients of state and cost function are allowed to be random and the coefficients of cost function are also uncertain. The existence of a unique robust optimal control (OC) v̄λ which depends on parameter λ[0,1] is obtained, and (λ,v̄λ) is verified to be a saddle point of a game problem. Then the solving of Problem RSLQ is proven to be equivalent to the seeking of a global maximum point λ of a value function Vλ(x) w.r.t. λ[0,1]. Furthermore, for the case with one-dimensional state, we obtain the continuity of Vλ(x) w.r.t. λ, which can also be seen as a stability property of value function of stochastic linear–quadratic (SLQ) problems w.r.t. parameter λ. The main challenge is the continuity dependency w.r.t. λ of solution of an auxiliary linear backward stochastic differential equation (BSDE), which has possibly unbounded coefficients and appears in the explicit form of Vλ(x). Via the estimates of bounded mean oscillation martingales (BMO martingales) and stochastic Riccati equations (SREs), along with transformation of measures, we overcome this obstacle and derive that Vλ(x) is Lipschitz continuous w.r.t. λ. Estimates of two generalized SREs appeared in an SLQ problem with conic constraint are also obtained. Some numerical examples are given to further verify the validity of our theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automatica
Automatica 工程技术-工程:电子与电气
CiteScore
10.70
自引率
7.80%
发文量
617
审稿时长
5 months
期刊介绍: Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field. After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience. Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信