{"title":"具有随机系数的双目标非齐次随机线性二次系统的鲁棒最优控制","authors":"Guangchen Wang , Zhuangzhuang Xing","doi":"10.1016/j.automatica.2025.112234","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates a robust stochastic linear–quadratic optimal control (RSLQ) problem with non-homogeneous terms in state, where all coefficients of state and cost function are allowed to be random and the coefficients of cost function are also uncertain. The existence of a unique robust optimal control (OC) <span><math><msup><mrow><mover><mrow><mi>v</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></msup></math></span> which depends on parameter <span><math><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span> is obtained, and <span><math><mrow><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>,</mo><msup><mrow><mover><mrow><mi>v</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></msup><mo>)</mo></mrow></math></span> is verified to be a saddle point of a game problem. Then the solving of Problem RSLQ is proven to be equivalent to the seeking of a global maximum point <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> of a value function <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>λ</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> w.r.t. <span><math><mrow><mi>λ</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. Furthermore, for the case with one-dimensional state, we obtain the continuity of <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>λ</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> w.r.t. <span><math><mi>λ</mi></math></span>, which can also be seen as a stability property of value function of stochastic linear–quadratic (SLQ) problems w.r.t. parameter <span><math><mi>λ</mi></math></span>. The main challenge is the continuity dependency w.r.t. <span><math><mi>λ</mi></math></span> of solution of an auxiliary linear backward stochastic differential equation (BSDE), which has possibly unbounded coefficients and appears in the explicit form of <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>λ</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. Via the estimates of bounded mean oscillation martingales (BMO martingales) and stochastic Riccati equations (SREs), along with transformation of measures, we overcome this obstacle and derive that <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>λ</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is Lipschitz continuous w.r.t. <span><math><mi>λ</mi></math></span>. Estimates of two generalized SREs appeared in an SLQ problem with conic constraint are also obtained. Some numerical examples are given to further verify the validity of our theoretical analysis.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"176 ","pages":"Article 112234"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust optimal control of bi-objective non-homogeneous stochastic linear quadratic system with random coefficients\",\"authors\":\"Guangchen Wang , Zhuangzhuang Xing\",\"doi\":\"10.1016/j.automatica.2025.112234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates a robust stochastic linear–quadratic optimal control (RSLQ) problem with non-homogeneous terms in state, where all coefficients of state and cost function are allowed to be random and the coefficients of cost function are also uncertain. The existence of a unique robust optimal control (OC) <span><math><msup><mrow><mover><mrow><mi>v</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></msup></math></span> which depends on parameter <span><math><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span> is obtained, and <span><math><mrow><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>,</mo><msup><mrow><mover><mrow><mi>v</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></msup><mo>)</mo></mrow></math></span> is verified to be a saddle point of a game problem. Then the solving of Problem RSLQ is proven to be equivalent to the seeking of a global maximum point <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> of a value function <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>λ</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> w.r.t. <span><math><mrow><mi>λ</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. Furthermore, for the case with one-dimensional state, we obtain the continuity of <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>λ</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> w.r.t. <span><math><mi>λ</mi></math></span>, which can also be seen as a stability property of value function of stochastic linear–quadratic (SLQ) problems w.r.t. parameter <span><math><mi>λ</mi></math></span>. The main challenge is the continuity dependency w.r.t. <span><math><mi>λ</mi></math></span> of solution of an auxiliary linear backward stochastic differential equation (BSDE), which has possibly unbounded coefficients and appears in the explicit form of <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>λ</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. Via the estimates of bounded mean oscillation martingales (BMO martingales) and stochastic Riccati equations (SREs), along with transformation of measures, we overcome this obstacle and derive that <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>λ</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is Lipschitz continuous w.r.t. <span><math><mi>λ</mi></math></span>. Estimates of two generalized SREs appeared in an SLQ problem with conic constraint are also obtained. Some numerical examples are given to further verify the validity of our theoretical analysis.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"176 \",\"pages\":\"Article 112234\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109825001268\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825001268","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Robust optimal control of bi-objective non-homogeneous stochastic linear quadratic system with random coefficients
This paper investigates a robust stochastic linear–quadratic optimal control (RSLQ) problem with non-homogeneous terms in state, where all coefficients of state and cost function are allowed to be random and the coefficients of cost function are also uncertain. The existence of a unique robust optimal control (OC) which depends on parameter is obtained, and is verified to be a saddle point of a game problem. Then the solving of Problem RSLQ is proven to be equivalent to the seeking of a global maximum point of a value function w.r.t. . Furthermore, for the case with one-dimensional state, we obtain the continuity of w.r.t. , which can also be seen as a stability property of value function of stochastic linear–quadratic (SLQ) problems w.r.t. parameter . The main challenge is the continuity dependency w.r.t. of solution of an auxiliary linear backward stochastic differential equation (BSDE), which has possibly unbounded coefficients and appears in the explicit form of . Via the estimates of bounded mean oscillation martingales (BMO martingales) and stochastic Riccati equations (SREs), along with transformation of measures, we overcome this obstacle and derive that is Lipschitz continuous w.r.t. . Estimates of two generalized SREs appeared in an SLQ problem with conic constraint are also obtained. Some numerical examples are given to further verify the validity of our theoretical analysis.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.