Linh Chi Tran , Xiao Su , Huynh Nguyen , Ly Bao Truc La , Philip Adu , Qiong Jia , Ivan Lee , Hsu-Chiang Kuan , Xianhu Liu , Jun Ma
{"title":"通过机械化学方法推进聚合物纳米复合材料","authors":"Linh Chi Tran , Xiao Su , Huynh Nguyen , Ly Bao Truc La , Philip Adu , Qiong Jia , Ivan Lee , Hsu-Chiang Kuan , Xianhu Liu , Jun Ma","doi":"10.1016/j.adna.2025.03.002","DOIUrl":null,"url":null,"abstract":"<div><div>Mechanochemical approaches have recently garnered significant interests in the development of polymer nanocomposites due to their effectiveness, environmental sustainability, scalability and simplicity. Most of previous reviews on this topic focus on either nanomaterial synthesis or specific methods, without fully exploring how these techniques affect the interfacial interactions and thus the morphology and properties of polymer nanocomposites. This review provides a comprehensive analysis of mechanochemical methods, encompassing both established techniques (e.g., ball milling and ultrasonication) and newer approaches (e.g., solid-state shear milling, focused ultrasonication or plasma-assisted mechanochemical mixing). It highlights the benefits, drawbacks and recent innovations of these methods regarding the dispersion of nanofillers within and their compatibility with polymer matrices. This review also provides a future perspective on integrating artificial intelligence and sustainable practices into mechanochemical processes, while proposing solutions to tackle the challenge of broad size distribution of nanofillers. We aim to foster the widespread adoption of mechanochemical processes across diverse fields, from laboratory to industrial scales.</div></div>","PeriodicalId":100034,"journal":{"name":"Advanced Nanocomposites","volume":"2 ","pages":"Pages 86-107"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing polymer nanocomposites through mechanochemical approaches\",\"authors\":\"Linh Chi Tran , Xiao Su , Huynh Nguyen , Ly Bao Truc La , Philip Adu , Qiong Jia , Ivan Lee , Hsu-Chiang Kuan , Xianhu Liu , Jun Ma\",\"doi\":\"10.1016/j.adna.2025.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mechanochemical approaches have recently garnered significant interests in the development of polymer nanocomposites due to their effectiveness, environmental sustainability, scalability and simplicity. Most of previous reviews on this topic focus on either nanomaterial synthesis or specific methods, without fully exploring how these techniques affect the interfacial interactions and thus the morphology and properties of polymer nanocomposites. This review provides a comprehensive analysis of mechanochemical methods, encompassing both established techniques (e.g., ball milling and ultrasonication) and newer approaches (e.g., solid-state shear milling, focused ultrasonication or plasma-assisted mechanochemical mixing). It highlights the benefits, drawbacks and recent innovations of these methods regarding the dispersion of nanofillers within and their compatibility with polymer matrices. This review also provides a future perspective on integrating artificial intelligence and sustainable practices into mechanochemical processes, while proposing solutions to tackle the challenge of broad size distribution of nanofillers. We aim to foster the widespread adoption of mechanochemical processes across diverse fields, from laboratory to industrial scales.</div></div>\",\"PeriodicalId\":100034,\"journal\":{\"name\":\"Advanced Nanocomposites\",\"volume\":\"2 \",\"pages\":\"Pages 86-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanocomposites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949944525000024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanocomposites","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949944525000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advancing polymer nanocomposites through mechanochemical approaches
Mechanochemical approaches have recently garnered significant interests in the development of polymer nanocomposites due to their effectiveness, environmental sustainability, scalability and simplicity. Most of previous reviews on this topic focus on either nanomaterial synthesis or specific methods, without fully exploring how these techniques affect the interfacial interactions and thus the morphology and properties of polymer nanocomposites. This review provides a comprehensive analysis of mechanochemical methods, encompassing both established techniques (e.g., ball milling and ultrasonication) and newer approaches (e.g., solid-state shear milling, focused ultrasonication or plasma-assisted mechanochemical mixing). It highlights the benefits, drawbacks and recent innovations of these methods regarding the dispersion of nanofillers within and their compatibility with polymer matrices. This review also provides a future perspective on integrating artificial intelligence and sustainable practices into mechanochemical processes, while proposing solutions to tackle the challenge of broad size distribution of nanofillers. We aim to foster the widespread adoption of mechanochemical processes across diverse fields, from laboratory to industrial scales.