无Liggett条件下开放WASEP平稳测度的收敛性

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Zoe Himwich
{"title":"无Liggett条件下开放WASEP平稳测度的收敛性","authors":"Zoe Himwich","doi":"10.1016/j.spa.2025.104634","DOIUrl":null,"url":null,"abstract":"<div><div>We demonstrate that Liggett’s condition can be relaxed without disrupting the convergence of open ASEP stationary measures to the open KPZ stationary measure. This is equivalent to demonstrating that, under weak asymmetry scaling and appropriate scaling of time and space, the four-parameter Askey–Wilson process converges to a two-parameter continuous dual Hahn process. We conjecture that the convergence of the open ASEP height function process to solutions to the open KPZ equation will hold for a wider range of ASEP parameters than those permitted by Liggett’s condition.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"185 ","pages":"Article 104634"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of the open WASEP stationary measure without Liggett’s condition\",\"authors\":\"Zoe Himwich\",\"doi\":\"10.1016/j.spa.2025.104634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We demonstrate that Liggett’s condition can be relaxed without disrupting the convergence of open ASEP stationary measures to the open KPZ stationary measure. This is equivalent to demonstrating that, under weak asymmetry scaling and appropriate scaling of time and space, the four-parameter Askey–Wilson process converges to a two-parameter continuous dual Hahn process. We conjecture that the convergence of the open ASEP height function process to solutions to the open KPZ equation will hold for a wider range of ASEP parameters than those permitted by Liggett’s condition.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"185 \",\"pages\":\"Article 104634\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925000754\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000754","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在不破坏开放ASEP平稳测度向开放KPZ平稳测度收敛的情况下,可以放宽Liggett条件。这相当于证明,在弱不对称标度和适当的时空标度下,四参数Askey-Wilson过程收敛为一个两参数连续对偶Hahn过程。我们推测开放的ASEP高度函数过程对开放的KPZ方程解的收敛性将在比Liggett条件允许的更大范围的ASEP参数下保持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of the open WASEP stationary measure without Liggett’s condition
We demonstrate that Liggett’s condition can be relaxed without disrupting the convergence of open ASEP stationary measures to the open KPZ stationary measure. This is equivalent to demonstrating that, under weak asymmetry scaling and appropriate scaling of time and space, the four-parameter Askey–Wilson process converges to a two-parameter continuous dual Hahn process. We conjecture that the convergence of the open ASEP height function process to solutions to the open KPZ equation will hold for a wider range of ASEP parameters than those permitted by Liggett’s condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信