个性化轻量级联邦学习,用于在异构数据环境中进行高效和私有的模型训练

IF 3.6
Ying Wang
{"title":"个性化轻量级联邦学习,用于在异构数据环境中进行高效和私有的模型训练","authors":"Ying Wang","doi":"10.1016/j.sasc.2025.200212","DOIUrl":null,"url":null,"abstract":"<div><div>Personalized federated learning (PFL) enables collaborative model training across devices while adapting to heterogeneous data, but faces resource constraints on edge devices. Combining PFL with pruning techniques helps address these constraints. A challenge is that one-size-fits-all pruning strategies may ignore the varying importance of parameters for local data. To overcome this, we propose PLFL, a novel personalized lightweight federated learning framework. PLFL uses a hypernetwork at the server level to deliver personalized local models to clients and incorporates a federated pruning mechanism tailored to parameter importance, ensuring optimal performance and maintaining personalization. Experimental results show that PLFL achieves higher accuracy with lower computational costs and fewer parameters compared to state-of-the-art methods on heterogeneous datasets.</div></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"7 ","pages":"Article 200212"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized lightweight federated learning for efficient and private model training in heterogeneous data environments\",\"authors\":\"Ying Wang\",\"doi\":\"10.1016/j.sasc.2025.200212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Personalized federated learning (PFL) enables collaborative model training across devices while adapting to heterogeneous data, but faces resource constraints on edge devices. Combining PFL with pruning techniques helps address these constraints. A challenge is that one-size-fits-all pruning strategies may ignore the varying importance of parameters for local data. To overcome this, we propose PLFL, a novel personalized lightweight federated learning framework. PLFL uses a hypernetwork at the server level to deliver personalized local models to clients and incorporates a federated pruning mechanism tailored to parameter importance, ensuring optimal performance and maintaining personalization. Experimental results show that PLFL achieves higher accuracy with lower computational costs and fewer parameters compared to state-of-the-art methods on heterogeneous datasets.</div></div>\",\"PeriodicalId\":101205,\"journal\":{\"name\":\"Systems and Soft Computing\",\"volume\":\"7 \",\"pages\":\"Article 200212\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772941925000304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941925000304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

个性化联邦学习(PFL)支持跨设备的协作模型训练,同时适应异构数据,但在边缘设备上面临资源限制。将PFL与修剪技术相结合有助于解决这些限制。一个挑战是,一刀切的修剪策略可能会忽略局部数据参数的不同重要性。为了克服这个问题,我们提出了一种新的个性化轻量级联邦学习框架PLFL。PLFL在服务器层使用超网络向客户端提供个性化的本地模型,并结合根据参数重要性量身定制的联邦修剪机制,以确保最佳性能并保持个性化。实验结果表明,与现有方法相比,PLFL在异构数据集上以更低的计算成本和更少的参数实现了更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalized lightweight federated learning for efficient and private model training in heterogeneous data environments
Personalized federated learning (PFL) enables collaborative model training across devices while adapting to heterogeneous data, but faces resource constraints on edge devices. Combining PFL with pruning techniques helps address these constraints. A challenge is that one-size-fits-all pruning strategies may ignore the varying importance of parameters for local data. To overcome this, we propose PLFL, a novel personalized lightweight federated learning framework. PLFL uses a hypernetwork at the server level to deliver personalized local models to clients and incorporates a federated pruning mechanism tailored to parameter importance, ensuring optimal performance and maintaining personalization. Experimental results show that PLFL achieves higher accuracy with lower computational costs and fewer parameters compared to state-of-the-art methods on heterogeneous datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信